Suppr超能文献

从有限的人体受试者数据集中生成一组 3D 计算机生成的乳房体模。

Generation of a suite of 3D computer-generated breast phantoms from a limited set of human subject data.

机构信息

Department of Biomedical Engineering, Duke University, Durham, North Carolina 27708, USA.

出版信息

Med Phys. 2013 Apr;40(4):043703. doi: 10.1118/1.4794924.

Abstract

PURPOSE

The authors previously reported on a three-dimensional computer-generated breast phantom, based on empirical human image data, including a realistic finite-element based compression model that was capable of simulating multimodality imaging data. The computerized breast phantoms are a hybrid of two phantom generation techniques, combining empirical breast CT (bCT) data with flexible computer graphics techniques. However, to date, these phantoms have been based on single human subjects. In this paper, the authors report on a new method to generate multiple phantoms, simulating additional subjects from the limited set of original dedicated breast CT data. The authors developed an image morphing technique to construct new phantoms by gradually transitioning between two human subject datasets, with the potential to generate hundreds of additional pseudoindependent phantoms from the limited bCT cases. The authors conducted a preliminary subjective assessment with a limited number of observers (n = 4) to illustrate how realistic the simulated images generated with the pseudoindependent phantoms appeared.

METHODS

Several mesh-based geometric transformations were developed to generate distorted breast datasets from the original human subject data. Segmented bCT data from two different human subjects were used as the "base" and "target" for morphing. Several combinations of transformations were applied to morph between the "base' and "target" datasets such as changing the breast shape, rotating the glandular data, and changing the distribution of the glandular tissue. Following the morphing, regions of skin and fat were assigned to the morphed dataset in order to appropriately assign mechanical properties during the compression simulation. The resulting morphed breast was compressed using a finite element algorithm and simulated mammograms were generated using techniques described previously. Sixty-two simulated mammograms, generated from morphing three human subject datasets, were used in a preliminary observer evaluation where four board certified breast radiologists with varying amounts of experience ranked the level of realism (from 1 = "fake" to 10 = "real") of the simulated images.

RESULTS

The morphing technique was able to successfully generate new and unique morphed datasets from the original human subject data. The radiologists evaluated the realism of simulated mammograms generated from the morphed and unmorphed human subject datasets and scored the realism with an average ranking of 5.87 ± 1.99, confirming that overall the phantom image datasets appeared more "real" than "fake." Moreover, there was not a significant difference (p > 0.1) between the realism of the unmorphed datasets (6.0 ± 1.95) compared to the morphed datasets (5.86 ± 1.99). Three of the four observers had overall average rankings of 6.89 ± 0.89, 6.9 ± 1.24, 6.76 ± 1.22, whereas the fourth observer ranked them noticeably lower at 2.94 ± 0.7.

CONCLUSIONS

This work presents a technique that can be used to generate a suite of realistic computerized breast phantoms from a limited number of human subjects. This suite of flexible breast phantoms can be used for multimodality imaging research to provide a known truth while concurrently producing realistic simulated imaging data.

摘要

目的

作者先前报道了一种基于经验人体图像数据的三维计算机生成乳房体模,包括能够模拟多模态成像数据的逼真有限元基础压缩模型。计算机化乳房体模是两种体模生成技术的混合体,将经验性乳房 CT(bCT)数据与灵活的计算机图形技术相结合。然而,迄今为止,这些体模都是基于单个人体。在本文中,作者报告了一种从有限的原始专用乳房 CT 数据集中生成多个体模的新方法。作者开发了一种图像变形技术,通过逐渐在两个人体数据集之间转换来构建新的体模,从而有可能从有限的 bCT 病例中生成数百个额外的伪独立体模。作者进行了一项初步的主观评估,由有限数量的观察者(n=4)进行,以说明使用伪独立体模生成的模拟图像的逼真程度。

方法

开发了几种基于网格的几何变换方法,从原始人体数据中生成变形的乳房数据集。使用两个不同人体的分割 bCT 数据作为变形的“基础”和“目标”。应用了几种变换组合来在“基础”和“目标”数据集之间进行变形,例如改变乳房形状、旋转腺体数据以及改变腺体组织的分布。变形后,将皮肤和脂肪区域分配给变形数据集,以便在压缩模拟过程中适当分配机械性能。使用有限元算法压缩得到的变形乳房,并使用先前描述的技术生成模拟乳房 X 线照片。使用三种人体数据集的变形生成了 62 张模拟乳房 X 线照片,并在初步观察者评估中使用,四位具有不同经验水平的经过认证的乳房放射科医生对模拟图像的逼真程度(从 1=“假”到 10=“真”)进行了排名。

结果

变形技术能够成功地从原始人体数据中生成新的和独特的变形数据集。放射科医生评估了从变形和未变形人体数据集生成的模拟乳房 X 线照片的逼真度,并以平均排名 5.87±1.99 进行评分,证实总体而言,体模图像数据集看起来比“假”更“真”。此外,未变形数据集(6.0±1.95)的逼真度与变形数据集(5.86±1.99)之间没有显著差异(p>0.1)。四位观察者中的三位的总体平均排名分别为 6.89±0.89、6.9±1.24、6.76±1.22,而第四位观察者的排名明显较低,为 2.94±0.7。

结论

这项工作提出了一种技术,可用于从有限数量的人体中生成一套逼真的计算机化乳房体模。这套灵活的乳房体模可用于多模态成像研究,提供已知的真实情况,同时生成逼真的模拟成像数据。

相似文献

引用本文的文献

2
Virtual clinical trials in medical imaging: a review.医学成像中的虚拟临床试验:综述
J Med Imaging (Bellingham). 2020 Jul;7(4):042805. doi: 10.1117/1.JMI.7.4.042805. Epub 2020 Apr 11.

本文引用的文献

7
Combined optical and X-ray tomosynthesis breast imaging.联合光学和 X 射线断层合成乳腺成像。
Radiology. 2011 Jan;258(1):89-97. doi: 10.1148/radiol.10082176. Epub 2010 Nov 9.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验