Chemical Physics Department, Weizmann Institute of Science, Rehovot 76100, Israel.
J Magn Reson. 2013 Jul;232:76-86. doi: 10.1016/j.jmr.2013.02.014. Epub 2013 Mar 14.
Diffusion-weighted (DW) MRI is a powerful modality for studying microstructure in normal and pathological tissues. The accuracy derived from DW MRI depends on the acquisition of quality images, and on a precise assessment of the b-values involved. Conventional DW MRI tends to be of limited use in regions suffering from large magnetic field or chemical shift heterogeneities, which severely distort the MR images. In this study we propose novel sequences based on SPatio-temporal ENcoding (SPEN), which overcome such shortcomings owing to SPEN's inherent robustness to offsets. SPEN, however, relies on the simultaneous application of gradients and radiofrequency-swept pulses, which may impart different diffusion weightings along the spatial axes. These will be further complicated in DW measurements by the diffusion-sensitizing gradients, and will in general lead to complex, spatially-dependent b-values. This study presents a formalism for analyzing these diffusion-weighted SPEN (dSPEN) data, which takes into account the concomitant effects of adiabatic pulses, of the imaging as well as diffusion gradients, and of the cross-terms between them. These analytical b-values derivations are subject to experimental validations in phantom systems and ex vivo spinal cords. Excellent agreement is found between the theoretical predictions and these dSPEN experiments. The ensuing methodology is then demonstrated by in vivo mapping of diffusion in human breast - organs where conventional k-space DW acquisition methods are challenged by both field and chemical shift heterogeneities. These studies demonstrate the increased robustness of dSPEN vis-à-vis comparable DW echo planar imaging, and demonstrate the value of this new methodology for medium- or high-field diffusion measurements in heterogeneous systems.
扩散加权(DW)MRI 是研究正常和病理组织微观结构的强大手段。DW MRI 的准确性取决于高质量图像的获取,以及对所涉及的 b 值的精确评估。传统的 DW MRI 在受到大磁场或化学位移不均匀性影响的区域的应用往往受到限制,这些区域会严重扭曲 MR 图像。在这项研究中,我们提出了基于时空编码(SPEN)的新序列,由于 SPEN 对偏移的固有鲁棒性,克服了这些缺点。然而,SPEN 依赖于梯度和射频扫频脉冲的同时应用,这可能会沿空间轴施加不同的扩散加权。在 DW 测量中,这些扩散敏感梯度会使这些变得更加复杂,并通常会导致复杂的、与空间相关的 b 值。本研究提出了一种分析这些扩散加权 SPEN(dSPEN)数据的形式主义方法,该方法考虑了绝热脉冲、成像以及扩散梯度的伴随效应,以及它们之间的交叉项的影响。这些分析 b 值的推导在体模系统和离体脊髓中进行了实验验证。在人体乳房的体内扩散映射中,我们发现理论预测和这些 dSPEN 实验之间存在极好的一致性,在这些器官中,常规 k 空间 DW 采集方法受到磁场和化学位移不均匀性的挑战。这些研究证明了 dSPEN 相对于可比 DW 回波平面成像的更高鲁棒性,并证明了这种新方法在不均匀系统中的中场或高场扩散测量中的价值。