Radiology, Stanford University, Stanford, California, USA.
Electrical Engineering, Stanford University, Stanford, California, USA.
Magn Reson Med. 2022 Jun;87(6):2650-2666. doi: 10.1002/mrm.29153. Epub 2022 Jan 11.
DWI near metal implants has not been widely explored due to substantial challenges associated with through-slice and in-plane distortions, the increased encoding requirement of different spectral bins, and limited SNR. There is no widely adopted clinical protocol for DWI near metal since the commonly used EPI trajectory fails completely due to distortion from extreme off-resonance ranging from 2 to 20 kHz. We present a sequence that achieves DWI near metal with moderate b-values (400-500 s/mm ) and volumetric coverage in clinically feasible scan times.
Multispectral excitation with Cartesian sampling, view angle tilting, and kz phase encoding reduce in-plane and through-plane off-resonance artifacts, and Carr-Purcell-Meiboom-Gill (CPMG) spin-echo refocusing trains counteract T2* effects. The effect of random phase on the refocusing train is eliminated using a stimulated echo diffusion preparation. Root-flipped Shinnar-Le Roux refocusing pulses permits preparation of a high spectral bandwidth, which improves imaging times by reducing the number of excitations required to cover the desired spectral range. B sensitivity is reduced by using an excitation that satisfies the CPMG condition in the preparation. A method for ADC quantification insensitive to background gradients is presented.
Non-linear phase refocusing pulses reduces the peak B by 46% which allows RF bandwidth to be doubled. Simulations and phantom experiments show that a non-linear phase CPMG pulse pair reduces B sensitivity. Application in vivo demonstrates complementary contrast to conventional multispectral acquisitions and improved visualization compared to DW-EPI.
Volumetric and multispectral DW imaging near metal can be achieved with a 3D encoded sequence.
由于与切片内和切片间扭曲、不同谱窗编码要求增加以及信噪比有限相关的重大挑战,金属植入物附近的 DWI 尚未得到广泛探索。由于来自 2 至 20 kHz 的极端离频范围的失真,通常使用的 EPI 轨迹完全失效,因此在金属附近进行 DWI 尚无广泛采用的临床方案。我们提出了一种在临床可行的扫描时间内实现金属附近中度 b 值(400-500 s/mm )和容积覆盖的 DWI 序列。
使用笛卡尔采样、视角倾斜和 kz 相位编码的多谱激发减少了切片内和切片间离频伪影,Carr-Purcell-Meiboom-Gill(CPMG)自旋回波重聚焦序列抵消了 T2*效应。使用受激回波扩散准备消除随机相位对重聚焦序列的影响。翻转根 Shinnar-Le Roux 重聚焦脉冲允许制备高光谱带宽,通过减少覆盖所需光谱范围所需的激发次数来提高成像时间。通过使用在准备中满足 CPMG 条件的激发来降低 B 灵敏度。提出了一种对背景梯度不敏感的 ADC 量化方法。
非线性相位重聚焦脉冲将峰值 B 降低了 46%,从而可以将 RF 带宽提高一倍。模拟和体模实验表明,非线性相位 CPMG 脉冲对可降低 B 灵敏度。在体内应用证明了与传统多谱采集互补的对比,并与 DW-EPI 相比改善了可视化效果。
可以使用 3D 编码序列实现金属附近的容积和多谱 DW 成像。