Suppr超能文献

苯并噻嗪衍生物在生物电化学系统中加速微生物的细胞外电子传递。

Phenothiazine derivative-accelerated microbial extracellular electron transfer in bioelectrochemical system.

机构信息

Department of Chemistry, University of Science & Technology of China, Hefei, China.

出版信息

Sci Rep. 2013;3:1616. doi: 10.1038/srep01616.

Abstract

In bioelectrochemical system (BES) the extracellular electron transfer (EET) from bacteria to anode electrode is recognized as a crucial step that governs the anodic reaction efficiency. Here, we report a novel approach to substantially enhance the microbial EET by immobilization of a small active phenothiazine derivative, methylene blue, on electrode surface. A comparison of the currents generated by Shewanella oneidensis MR-1 and its mutants as well as the electrochemical analytical results reveal that the accelerated EET was attributed to enhanced interactions between the bacterial outer-membrane cytochromes and the immobilized methylene blue. A further investigation into the process using in situ Raman spectro-electrochemical method coupled with density functional theory calculations demonstrates that the electron shuttling was achieved through the change of the molecule conformation of phenothiazine in the redox process. These results offer useful information for engineering BES.

摘要

在生物电化学系统(BES)中,细菌到阳极电极的胞外电子转移(EET)被认为是控制阳极反应效率的关键步骤。在这里,我们报告了一种通过将小分子活性吩噻嗪衍生物亚甲蓝固定在电极表面上,来大幅增强微生物 EET 的新方法。通过比较希瓦氏菌(Shewanella oneidensis MR-1)及其突变体产生的电流以及电化学分析结果,发现加速的 EET 归因于细菌外膜细胞色素与固定化亚甲蓝之间增强的相互作用。使用原位拉曼光谱电化学方法结合密度泛函理论计算对该过程进行的进一步研究表明,电子穿梭是通过吩噻嗪分子在氧化还原过程中构象的变化来实现的。这些结果为 BES 的工程设计提供了有用的信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8919/3619140/7c66b967e877/srep01616-f1.jpg

相似文献

2
Enhanced extracellular electron transfer between Shewanella putrefaciens and carbon felt electrode modified by bio-reduced graphene oxide.
Sci Total Environ. 2019 Nov 15;691:1089-1097. doi: 10.1016/j.scitotenv.2019.07.104. Epub 2019 Jul 8.
5
Three-Dimensional Electrodes for High-Performance Bioelectrochemical Systems.
Int J Mol Sci. 2017 Jan 4;18(1):90. doi: 10.3390/ijms18010090.
6
Shewanella putrefaciens CN32 outer membrane cytochromes MtrC and UndA reduce electron shuttles to produce electricity in microbial fuel cells.
Enzyme Microb Technol. 2018 Aug;115:23-28. doi: 10.1016/j.enzmictec.2018.04.005. Epub 2018 Apr 9.
7
In-situ growth of graphene/polyaniline for synergistic improvement of extracellular electron transfer in bioelectrochemical systems.
Biosens Bioelectron. 2017 Jan 15;87:195-202. doi: 10.1016/j.bios.2016.08.037. Epub 2016 Aug 13.
10
Molecular mechanisms regulating the catabolic and electrochemical activities of Shewanella oneidensis MR-1.
Biosci Biotechnol Biochem. 2021 Jun 24;85(7):1572-1581. doi: 10.1093/bbb/zbab088.

引用本文的文献

1
High power density redox-mediated Shewanella microbial flow fuel cells.
Nat Commun. 2024 Sep 27;15(1):8302. doi: 10.1038/s41467-024-52498-w.
2
Strain- and Substrate-Dependent Redox Mediator and Electricity Production by Pseudomonas aeruginosa.
Appl Environ Microbiol. 2016 Jul 29;82(16):5026-38. doi: 10.1128/AEM.01342-16. Print 2016 Aug 15.

本文引用的文献

1
3
Graphene oxide nanoribbons greatly enhance extracellular electron transfer in bio-electrochemical systems.
Chem Commun (Camb). 2011 May 28;47(20):5795-7. doi: 10.1039/c1cc10159e. Epub 2011 Apr 14.
4
5
Raman spectroelectrochemical study of Meldola blue, adsorbed and electropolymerized at a gold electrode.
J Colloid Interface Sci. 2011 May 1;357(1):189-97. doi: 10.1016/j.jcis.2011.01.086. Epub 2011 Feb 1.
6
Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells.
Nano Lett. 2011 Jan 12;11(1):291-6. doi: 10.1021/nl103905t. Epub 2010 Dec 15.
7
A role for microbial palladium nanoparticles in extracellular electron transfer.
Angew Chem Int Ed Engl. 2011 Jan 10;50(2):427-30. doi: 10.1002/anie.201002951.
8
Electrical transport along bacterial nanowires from Shewanella oneidensis MR-1.
Proc Natl Acad Sci U S A. 2010 Oct 19;107(42):18127-31. doi: 10.1073/pnas.1004880107. Epub 2010 Oct 11.
9
Microbial electrosynthesis - revisiting the electrical route for microbial production.
Nat Rev Microbiol. 2010 Oct;8(10):706-16. doi: 10.1038/nrmicro2422.
10
From MFC to MXC: chemical and biological cathodes and their potential for microbial bioelectrochemical systems.
Chem Soc Rev. 2010 Nov;39(11):4433-48. doi: 10.1039/c003068f. Epub 2010 Sep 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验