Suppr超能文献

施加不同电位时 PV-4 在网状玻璃碳(RVC)上的电化学特性。

Electrochemical Characteristics of PV-4 on Reticulated Vitreous Carbon (RVC) with Different Potentials Applied.

机构信息

School of Science, Minzu University of China, Beijing 100081, China.

Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Nur-Sultan 010000, Kazakhstan.

出版信息

Molecules. 2022 Aug 21;27(16):5330. doi: 10.3390/molecules27165330.

Abstract

The current output of an anodic bioelectrochemical system (BES) depends upon the extracellular electron transfer (EET) rate from electricigens to the electrodes. Thus, investigation of EET mechanisms between electricigens and solid electrodes is essential. Here, reticulated vitreous carbon (RVC) electrodes are used to increase the surface available for biofilm formation of the known electricigen PV-4, which is limited in conventional flat electrodes. PV-4 utilizes flavin-mediated EET at potential lower than the outer membrane cytochromes (OMC), while at higher potential, both direct electron transfer (DET) and mediated electron transfer (MET) contribute to the current output. Results show that high electrode potential favors cell attachment on RVC, which enhances the current output. DET is the prevailing mechanism in early biofilm, while the contribution of MET to current output increased as the biofilm matured. Electrochemical analysis under starvation shows that the mediators could be confined in the biofilm. The morphology of biofilm shows bacteria distributed on the top layer of honeycomb structures, preferentially on the flat areas. This study provides insights into the EET pathways of PV-4 on porous RVC electrodes at different biofilm ages and different set potential, which is important for the design of real-world BES.

摘要

当前的阳极生物电化学系统 (BES) 输出取决于电活性菌向电极的细胞外电子转移 (EET) 速率。因此,研究电活性菌和固体电极之间的 EET 机制至关重要。在这里,使用网状玻璃碳 (RVC) 电极来增加已知电活性菌 PV-4 生物膜形成的可用表面积,而在传统的平面电极中,PV-4 的生物膜形成表面积有限。PV-4 在低于外膜细胞色素 (OMC) 的电势下利用黄素介导的 EET,而在更高的电势下,直接电子转移 (DET) 和介导电子转移 (MET) 都有助于电流输出。结果表明,高电极电势有利于 RVC 上细胞的附着,从而提高了电流输出。DET 是早期生物膜中的主要机制,而随着生物膜的成熟,MET 对电流输出的贡献增加。饥饿状态下的电化学分析表明,这些介质可以被限制在生物膜内。生物膜的形态显示细菌分布在蜂窝状结构的顶层,优先分布在平坦区域。这项研究提供了在不同生物膜龄和不同设定电势下,PV-4 在多孔 RVC 电极上的 EET 途径的见解,这对于实际 BES 的设计非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3dd2/9413302/41864c30a002/molecules-27-05330-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验