Suppr超能文献

全扁平化碳纳米管的制备与表征:一种新型石墨烯纳米带类似物。

Fabrication and characterization of fully flattened carbon nanotubes: a new graphene nanoribbon analogue.

机构信息

Department of Chemistry, Nagoya University, Nagoya, Japan.

出版信息

Sci Rep. 2013;3:1617. doi: 10.1038/srep01617.

Abstract

Graphene nanoribbons (GNR) are one of the most promising candidates for the fabrication of graphene-based nanoelectronic devices such as high mobility field effect transistors (FET). Here, we report a high-yield fabrication of a high quality another type of GNR analogue, fully flattened carbon nanotubes (flattened CNTs), using solution-phase extraction of inner tubes from large-diameter multi-wall CNTs (MWCNTs). Transmission electron microscopy (TEM) observations show that flattened CNTs have width of typically 20 nm and a barbell-like cross section. Measurements of the low-bias conductance of isolated flattened CNTs as a function of gate voltage shows that the flattened CNTs display ambipolar conduction which is different from those of MWCNTs. The estimated gap based on temperature dependence of conductivity measurements of isolated flattened CNTs is 13.7 meV, which is probably caused by the modified electronic structure due to the flattening.

摘要

石墨烯纳米带(GNR)是制造基于石墨烯的纳米电子器件(如高迁移率场效应晶体管(FET))的最有前途的候选材料之一。在这里,我们报告了一种高产率的方法,通过从大直径多壁碳纳米管(MWCNT)中溶液相提取内管,制备出另一种高质量的 GNR 类似物——完全扁平化的碳纳米管(flattened CNT)。透射电子显微镜(TEM)观察表明,扁平化 CNT 的宽度通常为 20nm,具有哑铃状的横截面。对孤立的扁平化 CNT 的低偏压电导随栅极电压的函数的测量表明,扁平化 CNT 表现出双极性传导,这与 MWCNT 不同。基于孤立扁平化 CNT 电导率对温度依赖性的测量,估计的能隙为 13.7meV,这可能是由于扁平化导致的电子结构的改变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f456/3619137/46364bd6e910/srep01617-f1.jpg

相似文献

2
Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping.
Nano Lett. 2007 Jun;7(6):1469-73. doi: 10.1021/nl070133j. Epub 2007 Apr 27.
3
Fabrication of crossed junctions of semiconducting and metallic carbon nanotubes: a CNT-gated CNT-FET.
J Nanosci Nanotechnol. 2006 May;6(5):1325-30. doi: 10.1166/jnn.2006.321.
4
High yield fabrication of chemically reduced graphene oxide field effect transistors by dielectrophoresis.
Nanotechnology. 2010 Apr 23;21(16):165202. doi: 10.1088/0957-4484/21/16/165202. Epub 2010 Mar 26.
5
Top-gated graphene nanoribbon transistors with ultrathin high-k dielectrics.
Nano Lett. 2010 May 12;10(5):1917-21. doi: 10.1021/nl100840z.
6
Carbon nanotube multi-channeled field-effect transistors.
J Nanosci Nanotechnol. 2006 Dec;6(12):3789-93. doi: 10.1166/jnn.2006.626.
8
Synthesis of carbon nanotubes by rolling up patterned graphene nanoribbons using selective atomic adsorption.
Nano Lett. 2007 Oct;7(10):3046-50. doi: 10.1021/nl071511n. Epub 2007 Sep 11.
10
Charge noise in liquid-gated single-wall carbon nanotube transistors.
Nano Lett. 2008 Feb;8(2):685-8. doi: 10.1021/nl073271h. Epub 2008 Jan 25.

引用本文的文献

2
Interlayer Interactions in 1D Van der Waals Moiré Superlattices.
Adv Sci (Weinh). 2022 Jan;9(2):e2103460. doi: 10.1002/advs.202103460. Epub 2021 Nov 28.
4
Three-input gate logic circuits on chemically assembled single-electron transistors with organic and inorganic hybrid passivation layers.
Sci Technol Adv Mater. 2017 May 31;18(1):374-380. doi: 10.1080/14686996.2017.1320190. eCollection 2017.
5
6
Chains of carbon nanotetrahedra/nanoribbons.
Sci Rep. 2015 Feb 12;5:8430. doi: 10.1038/srep08430.

本文引用的文献

1
Closed-edged graphene nanoribbons from large-diameter collapsed nanotubes.
ACS Nano. 2012 Jul 24;6(7):6023-32. doi: 10.1021/nn301039v. Epub 2012 Jun 14.
2
Scalable templated growth of graphene nanoribbons on SiC.
Nat Nanotechnol. 2010 Oct;5(10):727-31. doi: 10.1038/nnano.2010.192. Epub 2010 Oct 3.
3
Solution-phase extraction of ultrathin inner shells from double-wall carbon nanotubes.
ACS Nano. 2010 Oct 26;4(10):5807-12. doi: 10.1021/nn1015665.
4
Sub-100 nm channel length graphene transistors.
Nano Lett. 2010 Oct 13;10(10):3952-6. doi: 10.1021/nl101724k.
5
Roll-to-roll production of 30-inch graphene films for transparent electrodes.
Nat Nanotechnol. 2010 Aug;5(8):574-8. doi: 10.1038/nnano.2010.132. Epub 2010 Jun 20.
6
Electron transport in disordered graphene nanoribbons.
Phys Rev Lett. 2010 Feb 5;104(5):056801. doi: 10.1103/PhysRevLett.104.056801. Epub 2010 Feb 1.
7
Facile synthesis of high-quality graphene nanoribbons.
Nat Nanotechnol. 2010 May;5(5):321-5. doi: 10.1038/nnano.2010.54. Epub 2010 Apr 4.
8
Narrow graphene nanoribbons from carbon nanotubes.
Nature. 2009 Apr 16;458(7240):877-80. doi: 10.1038/nature07919.
9
Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons.
Nature. 2009 Apr 16;458(7240):872-6. doi: 10.1038/nature07872.
10
Rational fabrication of graphene nanoribbons using a nanowire etch mask.
Nano Lett. 2009 May;9(5):2083-7. doi: 10.1021/nl900531n.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验