Department of Chemistry and Biochemistry, Montana State University Bozeman, MT, USA.
Front Microbiol. 2013 Apr 3;4:62. doi: 10.3389/fmicb.2013.00062. eCollection 2013.
Diether and tetraether lipids are fundamental components of the archaeal cell membrane. Archaea adjust the degree of tetraether lipid cyclization in order to maintain functional membranes and cellular homeostasis when confronted with pH and/or thermal stress. Thus, the ability to adjust tetraether lipid composition likely represents a critical phenotypic trait that enabled archaeal diversification into environments characterized by extremes in pH and/or temperature. Here we assess the relationship between geochemical variation, core- and polar-isoprenoid glycerol dibiphytanyl glycerol tetraether (C-iGDGT and P-iGDGT, respectively) lipid composition, and archaeal 16S rRNA gene diversity and abundance in 27 geothermal springs in Yellowstone National Park, Wyoming. The composition and abundance of C-iGDGT and P-iGDGT lipids recovered from geothermal ecosystems were distinct from surrounding soils, indicating that they are synthesized endogenously. With the exception of GDGT-0 (no cyclopentyl rings), the abundances of individual C-iGDGT and P-iGDGT lipids were significantly correlated. The abundance of a number of individual tetraether lipids varied positively with the relative abundance of individual 16S rRNA gene sequences, most notably crenarchaeol in both the core and polar GDGT fraction and sequences closely affiliated with Candidatus Nitrosocaldus yellowstonii. This finding supports the proposal that crenarchaeol is a biomarker for nitrifying archaea. Variation in the degree of cyclization of C- and P-iGDGT lipids recovered from geothermal mats and sediments could best be explained by variation in spring pH, with lipids from acidic environments tending to have, on average, more internal cyclic rings than those from higher pH ecosystems. Likewise, variation in the phylogenetic composition of archaeal 16S rRNA genes could best be explained by spring pH. In turn, the phylogenetic similarity of archaeal 16S rRNA genes was significantly correlated with the similarity in the composition of C- and P-iGDGT lipids. Taken together, these data suggest that the ability to adjust the composition of GDGT lipid membranes played a central role in the diversification of archaea into or out of environments characterized by extremes of low pH and high temperature.
饮食和四醚脂质是古菌细胞膜的基本组成部分。古菌通过调节四醚脂质的环化程度来维持功能膜和细胞内环境的稳定,以应对 pH 值和/或热胁迫。因此,调节四醚脂质组成的能力可能代表了一种关键的表型特征,使古菌能够多样化到 pH 值和/或温度极端的环境中。在这里,我们评估了怀俄明州黄石国家公园 27 个温泉中的地球化学变化、核心和极性异戊二烯甘油二植烷甘油四醚 (C-iGDGT 和 P-iGDGT,分别) 脂质组成以及古菌 16S rRNA 基因多样性和丰度之间的关系。从地热生态系统中回收的 C-iGDGT 和 P-iGDGT 脂质的组成和丰度与周围土壤明显不同,表明它们是内源性合成的。除了 GDGT-0(无环戊基环)外,个别 C-iGDGT 和 P-iGDGT 脂质的丰度显著相关。许多个别四醚脂质的丰度与个别 16S rRNA 基因序列的相对丰度呈正相关,最显著的是核心和极性 GDGT 部分的 crenarchaeol 以及与 Candidatus Nitrosocaldus yellowstonii 密切相关的序列。这一发现支持了 crenarchaeol 是硝化古菌生物标志物的观点。从地热垫和沉积物中回收的 C-和 P-iGDGT 脂质的环化程度的变化可以通过泉水 pH 值的变化来最好地解释,酸性环境中的脂质平均比高 pH 值生态系统中的脂质具有更多的内部环。同样,古菌 16S rRNA 基因的系统发育组成的变化可以通过泉水 pH 值来最好地解释。反过来,古菌 16S rRNA 基因的系统发育相似性与 C-和 P-iGDGT 脂质组成的相似性显著相关。总的来说,这些数据表明,调节 GDGT 脂质膜组成的能力在古菌向低 pH 和高温极端环境的多样化或从这些环境中多样化的过程中发挥了核心作用。