Suppr超能文献

AutoDTI++:基于自动编码器的 DTI 预测深度无监督学习。

AutoDTI++: deep unsupervised learning for DTI prediction by autoencoders.

机构信息

Department of Computer Engineering, Yazd University, Yazd, Iran.

Laboratory of Bioinformatics and Drug Design (LBD), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.

出版信息

BMC Bioinformatics. 2021 Apr 20;22(1):204. doi: 10.1186/s12859-021-04127-2.

Abstract

BACKGROUND

Drug-target interaction (DTI) plays a vital role in drug discovery. Identifying drug-target interactions related to wet-lab experiments are costly, laborious, and time-consuming. Therefore, computational methods to predict drug-target interactions are an essential task in the drug discovery process. Meanwhile, computational methods can reduce search space by proposing potential drugs already validated on wet-lab experiments. Recently, deep learning-based methods in drug-target interaction prediction have gotten more attention. Traditionally, DTI prediction methods' performance heavily depends on additional information, such as protein sequence and molecular structure of the drug, as well as deep supervised learning.

RESULTS

This paper proposes a method based on deep unsupervised learning for drug-target interaction prediction called AutoDTI++. The proposed method includes three steps. The first step is to pre-process the interaction matrix. Since the interaction matrix is sparse, we solved the sparsity of the interaction matrix with drug fingerprints. Then, in the second step, the AutoDTI approach is introduced. In the third step, we post-preprocess the output of the AutoDTI model.

CONCLUSIONS

Experimental results have shown that we were able to improve the prediction performance. To this end, the proposed method has been compared to other algorithms using the same reference datasets. The proposed method indicates that the experimental results of running five repetitions of tenfold cross-validation on golden standard datasets (Nuclear Receptors, GPCRs, Ion channels, and Enzymes) achieve good performance with high accuracy.

摘要

背景

药物-靶点相互作用(DTI)在药物发现中起着至关重要的作用。鉴定与湿实验室实验相关的药物-靶点相互作用既昂贵又费力且耗时。因此,预测药物-靶点相互作用的计算方法是药物发现过程中的一项重要任务。同时,计算方法可以通过提出已经在湿实验室实验中验证过的潜在药物来缩小搜索空间。最近,基于深度学习的药物-靶点相互作用预测方法受到了更多关注。传统上,DTI 预测方法的性能严重依赖于其他信息,如药物的蛋白质序列和分子结构以及深度监督学习。

结果

本文提出了一种称为 AutoDTI++的基于深度无监督学习的药物-靶点相互作用预测方法。该方法包括三个步骤。第一步是预处理相互作用矩阵。由于相互作用矩阵是稀疏的,我们使用药物指纹解决了相互作用矩阵的稀疏性。然后,在第二步中,引入了 AutoDTI 方法。在第三步中,我们对 AutoDTI 模型的输出进行后预处理。

结论

实验结果表明,我们能够提高预测性能。为此,我们使用相同的参考数据集将所提出的方法与其他算法进行了比较。该方法在核受体、GPCR、离子通道和酶等金标准数据集上进行了五次十折交叉验证的重复实验,结果表明该方法具有良好的性能和高精度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/79b5/8056558/59c0702e4917/12859_2021_4127_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验