Suppr超能文献

基于功能磁共振成像(fMRI)的诊断在多任务学习中的挑战:对精神疾病和拷贝数变异(CNV)的诊断可能需要数千名患者。

Challenges in multi-task learning for fMRI-based diagnosis: Benefits for psychiatric conditions and CNVs would likely require thousands of patients.

作者信息

Harvey Annabelle, Moreau Clara A, Kumar Kuldeep, Huguet Guillaume, Urchs Sebastian G W, Sharmarke Hanad, Jizi Khadije, Martin Charles-Olivier, Younis Nadine, Tamer Petra, Martineau Jean-Louis, Orban Pierre, Silva Ana Isabel, Hall Jeremy, van den Bree Marianne B M, Owen Michael J, Linden David E J, Lippé Sarah, Bearden Carrie E, Dumas Guillaume, Jacquemont Sébastien, Bellec Pierre

机构信息

Department of Computer Science and Operational Research, University of Montréal, Montréal, Canada.

Centre de recherche de l'institut universitaire de gériatrie de Montréal, Montréal, Canada.

出版信息

Imaging Neurosci (Camb). 2024 Jul 26;2. doi: 10.1162/imag_a_00222. eCollection 2024.

Abstract

There is a growing interest in using machine learning (ML) models to perform automatic diagnosis of psychiatric conditions; however, generalising the prediction of ML models to completely independent data can lead to sharp decrease in performance. Patients with different psychiatric diagnoses have traditionally been studied independently, yet there is a growing recognition of neuroimaging signatures shared across them as well as rare genetic copy number variants (CNVs). In this work, we assess the potential of multi-task learning (MTL) to improve accuracy by characterising multiple related conditions with a single model, making use of information shared across diagnostic categories and exposing the model to a larger and more diverse dataset. As a proof of concept, we first established the efficacy of MTL in a context where there is clearly information shared across tasks: the same target (age or sex) is predicted at different sites of data collection in a large functional magnetic resonance imaging (fMRI) dataset compiled from multiple studies. MTL generally led to substantial gains relative to independent prediction at each site. Performing scaling experiments on the UK Biobank, we observed that performance was highly dependent on sample size: for large sample sizes (N > 6000) sex prediction was better using MTL across three sites (N = K per site) than prediction at a single site (N = 3K), but for small samples (N < 500) MTL was actually detrimental for age prediction. We then used established machine-learning methods to benchmark the diagnostic accuracy of each of the 7 CNVs (N = 19-103) and 4 psychiatric conditions (N = 44-472) independently, replicating the accuracy previously reported in the literature on psychiatric conditions. We observed that MTL hurt performance when applied across the full set of diagnoses, and complementary analyses failed to identify pairs of conditions which would benefit from MTL. Taken together, our results show that if a successful multi-task diagnostic model of psychiatric conditions were to be developed with resting-state fMRI, it would likely require datasets with thousands of patients across different diagnoses.

摘要

使用机器学习(ML)模型进行精神疾病的自动诊断正引发越来越多的关注;然而,将ML模型的预测推广到完全独立的数据上可能会导致性能急剧下降。传统上,患有不同精神疾病诊断的患者是被独立研究的,但人们越来越认识到他们之间共享的神经影像特征以及罕见的基因拷贝数变异(CNV)。在这项工作中,我们评估了多任务学习(MTL)通过使用单个模型来表征多个相关病症、利用跨诊断类别共享的信息并使模型接触更大且更多样化的数据集来提高准确性的潜力。作为概念验证,我们首先在存在明显跨任务共享信息的背景下确立了MTL的有效性:在从多项研究汇编而成的大型功能磁共振成像(fMRI)数据集中,在不同数据收集地点预测相同目标(年龄或性别)。相对于在每个地点进行独立预测,MTL通常带来显著提升。在英国生物银行进行规模实验时,我们观察到性能高度依赖于样本量:对于大样本量(N > 6000),在三个地点(每个地点N = K)使用MTL进行性别预测比在单个地点(N = 3K)进行预测更好,但对于小样本(N < 500),MTL实际上对年龄预测不利。然后,我们使用已建立的机器学习方法独立地对7种CNV(N = 19 - 103)和4种精神疾病(N = 44 - 472)中的每一种的诊断准确性进行基准测试,复制先前文献中关于精神疾病所报道的准确性。我们观察到,当MTL应用于全套诊断时会损害性能,但补充分析未能识别出会从MTL中受益的病症对。综合来看,我们的结果表明,如果要利用静息态fMRI开发出成功的精神疾病多任务诊断模型,很可能需要包含数千名不同诊断患者的数据集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3baf/12290746/3b41ce5684eb/imag_a_00222_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验