Department of Biology, Indiana University, Bloomington, IN 47405, USA.
BMC Biol. 2013 Apr 15;11:29. doi: 10.1186/1741-7007-11-29.
The mitochondrial genomes of flowering plants vary greatly in size, gene content, gene order, mutation rate and level of RNA editing. However, the narrow phylogenetic breadth of available genomic data has limited our ability to reconstruct these traits in the ancestral flowering plant and, therefore, to infer subsequent patterns of evolution across angiosperms.
We sequenced the mitochondrial genome of Liriodendron tulipifera, the first from outside the monocots or eudicots. This 553,721 bp mitochondrial genome has evolved remarkably slowly in virtually all respects, with an extraordinarily low genome-wide silent substitution rate, retention of genes frequently lost in other angiosperm lineages, and conservation of ancestral gene clusters. The mitochondrial protein genes in Liriodendron are the most heavily edited of any angiosperm characterized to date. Most of these sites are also edited in various other lineages, which allowed us to polarize losses of editing sites in other parts of the angiosperm phylogeny. Finally, we added comprehensive gene sequence data for two other magnoliids, Magnolia stellata and the more distantly related Calycanthus floridus, to measure rates of sequence evolution in Liriodendron with greater accuracy. The Magnolia genome has evolved at an even lower rate, revealing a roughly 5,000-fold range of synonymous-site divergence among angiosperms whose mitochondrial gene space has been comprehensively sequenced.
Using Liriodendron as a guide, we estimate that the ancestral flowering plant mitochondrial genome contained 41 protein genes, 14 tRNA genes of mitochondrial origin, as many as 7 tRNA genes of chloroplast origin, >700 sites of RNA editing, and some 14 colinear gene clusters. Many of these gene clusters, genes and RNA editing sites have been variously lost in different lineages over the course of the ensuing ∽200 million years of angiosperm evolution.
开花植物的线粒体基因组在大小、基因含量、基因顺序、突变率和 RNA 编辑水平上差异很大。然而,现有基因组数据的狭窄系统发育范围限制了我们在祖先开花植物中重建这些特征的能力,因此也限制了我们推断被子植物进化后续模式的能力。
我们对 Liriodendron tulipifera 的线粒体基因组进行了测序,这是第一个不在单子叶植物或双子叶植物中的基因组。这个 553721bp 的线粒体基因组在几乎所有方面都进化得非常缓慢,具有极高的全基因组沉默替换率,保留了在其他被子植物谱系中经常丢失的基因,以及祖先进化基因簇的保守性。Liriodendron 的线粒体蛋白基因是迄今为止所有已描述的被子植物中编辑最多的。这些位点中的大多数也在其他各种谱系中被编辑,这使我们能够在被子植物系统发育的其他部分极化编辑位点的丢失。最后,我们添加了两个其他木兰类植物 Magnolia stellata 和更远缘的 Calycanthus floridus 的综合基因序列数据,以更准确地测量 Liriodendron 中的序列进化率。Magnolia 基因组的进化速度甚至更低,揭示了在其线粒体基因空间得到全面测序的被子植物中,同义位点分歧的范围大约有 5000 倍。
利用 Liriodendron 作为指导,我们估计祖先的开花植物线粒体基因组包含 41 个蛋白质基因、14 个线粒体起源的 tRNA 基因、多达 7 个叶绿体起源的 tRNA 基因、>700 个 RNA 编辑位点和约 14 个共线性基因簇。在随后的 2 亿年被子植物进化过程中,许多这样的基因簇、基因和 RNA 编辑位点在不同的谱系中发生了各种丢失。