Manzini G, Xodo L E, Gasparotto D, Quadrifoglio F, van der Marel G A, van Boom J H
Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, Italy.
J Mol Biol. 1990 Jun 20;213(4):833-43. doi: 10.1016/S0022-2836(05)80267-0.
The 26mer oligodeoxynucleotide d(GAAGGAGGAGATTTTTCTCCTCCTTC) adopts in solution a unimolecular hairpin structure (h), with an oligopurine-oligopyrimidine (Pu-Py) stem. When h is mixed with d(CTTCCTCCTCT) (s1) the two strands co-migrate in polyacrylamide gel electrophoresis at pH 5. If s1 is substituted with d(TCTCCTCCTTC) (s2), such behavior is not observed and the two strands migrate separately. This supports the suggestion of the formation of a triple-stranded structure by h and s1 (h:s1) but not by h and s2, and confirms the strand polarity requirement of the third pyrimidine strand, which is necessary for this type of structure. The formation of a triple helix by h:s1 is supported by electrophoretic mobility data (Ferguson plot) and by enzymatic assay with DNase I. Circular dichroism measurements show that, upon triple helix formation, there are two negative ellipticities: a weaker one (delta epsilon = 80 M-1 cm-1) at 242 nm and a stronger one (delta epsilon = 210 M-1 cm-1) at 212 nm. The latter has been observed also in triple-stranded polynucleotides, and can be considered as the trademark for a Py:Pu:Py DNA triplex. Comparison of ultraviolet absorption at 270 nm and temperature measurements shows that the triple-stranded structure melts with a biphasic profile. The lower temperature transition is bimolecular and is attributable to the breakdown of the triplex to give h and s1, while the higher temperature transition is monomolecular and is due to the transition of hairpin to coil structure. The duplex-to-triplex transition is co-operative, fully reversible and with a hyperchromism of about 10%. The analysis of the melting curves, with a three-state model, allows estimation of the thermodynamic parameters of triple helix formation. We found that the duplex-to-triplex transition of h: s1 is accompanied by an average change in enthalpy (less the protonation contribution) of -73(+/- 5) kcal/mol of triplex, which corresponds to -6.6(+/- 0.4) kcal/mol of binding pyrimidine, attributable to stacking and hydrogen bonding interactions.
26聚体寡脱氧核苷酸d(GAAGGAGGAGATTTTTCTCCTCCTTC)在溶液中形成单分子发夹结构(h),带有一个寡嘌呤-寡嘧啶(Pu-Py)茎。当h与d(CTTCCTCCTCT)(s1)混合时,两条链在pH 5的聚丙烯酰胺凝胶电泳中共同迁移。如果将s1替换为d(TCTCCTCCTTC)(s2),则不会观察到这种行为,两条链会分别迁移。这支持了h和s1形成三链结构(h:s1)而非h和s2形成三链结构的观点,并证实了第三嘧啶链的链极性要求,这对于这种类型的结构是必要的。h:s1形成三螺旋的观点得到了电泳迁移率数据(弗格森图)和DNase I酶切分析的支持。圆二色性测量表明,在形成三螺旋时,有两个负椭圆率:一个较弱的(δε = 80 M-1 cm-1)在242 nm处,一个较强的(δε = 210 M-1 cm-1)在212 nm处。后者在三链多核苷酸中也有观察到,可被视为Py:Pu:Py DNA三链体的特征。270 nm处的紫外吸收和温度测量结果的比较表明,三链结构以双相曲线解链。较低温度的转变是双分子的,归因于三链体分解为h和s1,而较高温度的转变是单分子的,是由于发夹结构向线圈结构的转变。双链到三链的转变是协同的、完全可逆的,增色效应约为10%。用三态模型对解链曲线进行分析,可以估算三螺旋形成的热力学参数。我们发现,h:s1从双链到三链的转变伴随着三链体平均焓变(减去质子化贡献)为-73(±5) kcal/mol三链体,这相当于结合嘧啶的-6.6(±0.4) kcal/mol,归因于堆积和氢键相互作用。