Suppr超能文献

细胞凋亡及其他免疫生物标志物可预测流感疫苗应答。

Apoptosis and other immune biomarkers predict influenza vaccine responsiveness.

机构信息

Department of Microbiology and Immunology, School of Medicine, Stanford University, Palo Alto, CA 94305, USA.

出版信息

Mol Syst Biol. 2013 Apr 16;9:659. doi: 10.1038/msb.2013.15.

Abstract

Despite the importance of the immune system in many diseases, there are currently no objective benchmarks of immunological health. In an effort to identifying such markers, we used influenza vaccination in 30 young (20-30 years) and 59 older subjects (60 to >89 years) as models for strong and weak immune responses, respectively, and assayed their serological responses to influenza strains as well as a wide variety of other parameters, including gene expression, antibodies to hemagglutinin peptides, serum cytokines, cell subset phenotypes and in vitro cytokine stimulation. Using machine learning, we identified nine variables that predict the antibody response with 84% accuracy. Two of these variables are involved in apoptosis, which positively associated with the response to vaccination and was confirmed to be a contributor to vaccine responsiveness in mice. The identification of these biomarkers provides new insights into what immune features may be most important for immune health.

摘要

尽管免疫系统在许多疾病中都很重要,但目前还没有免疫健康的客观基准。为了确定这些标志物,我们分别使用流感疫苗接种来模拟年轻人(20-30 岁)和老年人(60 岁以上至 >89 岁)的强免疫和弱免疫反应,并检测了他们对流感株的血清学反应以及广泛的其他参数,包括基因表达、对血凝素肽的抗体、血清细胞因子、细胞亚群表型和体外细胞因子刺激。使用机器学习,我们确定了九个可准确预测抗体反应的变量。其中两个变量与凋亡有关,凋亡与疫苗接种反应呈正相关,并被证实是小鼠疫苗反应性的一个贡献因素。这些生物标志物的鉴定为了解哪些免疫特征对免疫健康最重要提供了新的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3688/3658270/639d55f4d983/msb201315-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验