Department of Biomedical and Molecular Sciences and Center for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada.
PLoS Comput Biol. 2013 Apr;9(4):e1003021. doi: 10.1371/journal.pcbi.1003021. Epub 2013 Apr 4.
Our actions take place in space and time, but despite the role of time in decision theory and the growing acknowledgement that the encoding of time is crucial to behaviour, few studies have considered the interactions between neural codes for objects in space and for elapsed time during perceptual decisions. The speed-accuracy trade-off (SAT) provides a window into spatiotemporal interactions. Our hypothesis is that temporal coding determines the rate at which spatial evidence is integrated, controlling the SAT by gain modulation. Here, we propose that local cortical circuits are inherently suited to the relevant spatial and temporal coding. In simulations of an interval estimation task, we use a generic local-circuit model to encode time by 'climbing' activity, seen in cortex during tasks with a timing requirement. The model is a network of simulated pyramidal cells and inhibitory interneurons, connected by conductance synapses. A simple learning rule enables the network to quickly produce new interval estimates, which show signature characteristics of estimates by experimental subjects. Analysis of network dynamics formally characterizes this generic, local-circuit timing mechanism. In simulations of a perceptual decision task, we couple two such networks. Network function is determined only by spatial selectivity and NMDA receptor conductance strength; all other parameters are identical. To trade speed and accuracy, the timing network simply learns longer or shorter intervals, driving the rate of downstream decision processing by spatially non-selective input, an established form of gain modulation. Like the timing network's interval estimates, decision times show signature characteristics of those by experimental subjects. Overall, we propose, demonstrate and analyse a generic mechanism for timing, a generic mechanism for modulation of decision processing by temporal codes, and we make predictions for experimental verification.
我们的行为发生在时空中,但尽管时间在决策理论中扮演着重要角色,并且越来越多的人认识到时间的编码对行为至关重要,但很少有研究考虑过空间中物体的神经编码与感知决策中经过时间的相互作用。速度-准确性权衡(SAT)为时空相互作用提供了一个窗口。我们的假设是,时间编码决定了空间证据的整合速度,通过增益调制控制 SAT。在这里,我们提出局部皮质电路固有地适合相关的时空编码。在间隔估计任务的模拟中,我们使用通用的局部电路模型通过在具有计时要求的任务中观察到的“爬升”活动来编码时间。该模型是一个由模拟的锥体神经元和抑制性中间神经元组成的网络,通过电导突触连接。一个简单的学习规则使网络能够快速产生新的间隔估计,这些估计显示出实验对象估计的特征。对网络动态的分析正式描述了这种通用的局部电路定时机制。在感知决策任务的模拟中,我们耦合两个这样的网络。网络功能仅由空间选择性和 NMDA 受体电导强度决定;所有其他参数都相同。为了权衡速度和准确性,定时网络只需学习更长或更短的间隔,通过空间非选择性输入驱动下游决策处理的速率,这是一种已建立的增益调制形式。与定时网络的间隔估计一样,决策时间显示出实验对象的特征。总的来说,我们提出、证明和分析了一种通用的定时机制,一种通过时间编码调制决策处理的通用机制,并对实验验证做出了预测。