Suppr超能文献

流体流动引起的壁面切应力与上皮性卵巢癌腹膜扩散。

Fluid-flow induced wall shear stress and epithelial ovarian cancer peritoneal spreading.

机构信息

Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel.

出版信息

PLoS One. 2013 Apr 10;8(4):e60965. doi: 10.1371/journal.pone.0060965. Print 2013.

Abstract

Epithelial ovarian cancer (EOC) is usually discovered after extensive metastasis have developed in the peritoneal cavity. The ovarian surface is exposed to peritoneal fluid pressures and shear forces due to the continuous peristaltic motions of the gastro-intestinal system, creating a mechanical micro-environment for the cells. An in vitro experimental model was developed to expose EOC cells to steady fluid flow induced wall shear stresses (WSS). The EOC cells were cultured from OVCAR-3 cell line on denuded amniotic membranes in special wells. Wall shear stresses of 0.5, 1.0 and 1.5 dyne/cm(2) were applied on the surface of the cells under conditions that mimic the physiological environment, followed by fluorescent stains of actin and β-tubulin fibers. The cytoskeleton response to WSS included cell elongation, stress fibers formation and generation of microtubules. More cytoskeletal components were produced by the cells and arranged in a denser and more organized structure within the cytoplasm. This suggests that WSS may have a significant role in the mechanical regulation of EOC peritoneal spreading.

摘要

上皮性卵巢癌 (EOC) 通常在腹腔内广泛转移后才被发现。由于胃肠道系统的持续蠕动,卵巢表面会受到腹膜液压力和切变力的影响,为细胞创造了一个机械微环境。我们建立了体外实验模型,使 EOC 细胞暴露于持续的流体流动诱导的壁面切应力(WSS)下。将 EOC 细胞从 OVCAR-3 细胞系培养在脱细胞羊膜的专用小室内。在模拟生理环境的条件下,将 0.5、1.0 和 1.5 达因/平方厘米的壁面切应力施加于细胞表面,随后用肌动蛋白和β-微管蛋白纤维的荧光染色。细胞骨架对 WSS 的反应包括细胞伸长、应力纤维形成和微管生成。细胞产生更多的细胞骨架成分,并在细胞质内排列成更密集和更有组织的结构。这表明 WSS 可能在上皮性卵巢癌腹膜扩散的机械调节中发挥重要作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b9b/3622607/54b1940b35ac/pone.0060965.g001.jpg

相似文献

1
Fluid-flow induced wall shear stress and epithelial ovarian cancer peritoneal spreading.
PLoS One. 2013 Apr 10;8(4):e60965. doi: 10.1371/journal.pone.0060965. Print 2013.
4
Loss of lamin A but not lamin C expression in epithelial ovarian cancer cells is associated with metastasis and poor prognosis.
Pathol Res Pract. 2015 Feb;211(2):175-82. doi: 10.1016/j.prp.2014.11.008. Epub 2014 Nov 26.
5
Tumor-associated fibrosis: a unique mechanism promoting ovarian cancer metastasis and peritoneal dissemination.
Cancer Metastasis Rev. 2024 Sep;43(3):1037-1053. doi: 10.1007/s10555-024-10169-8. Epub 2024 Mar 28.
6
Mesothelial cells interact with tumor cells for the formation of ovarian cancer multicellular spheroids in peritoneal effusions.
Clin Exp Metastasis. 2016 Dec;33(8):839-852. doi: 10.1007/s10585-016-9821-y. Epub 2016 Sep 9.
8
The expression of asparaginyl endopeptidase promotes growth potential in epithelial ovarian cancer.
Cancer Biol Ther. 2017 Apr 3;18(4):222-228. doi: 10.1080/15384047.2017.1294290. Epub 2017 Mar 3.
9
[Specific folic-acid targeted photosensitizer. The first step toward intraperitoneal photodynamic therapy for epithelial ovarian cancer].
Gynecol Obstet Fertil Senol. 2017 Apr;45(4):190-196. doi: 10.1016/j.gofs.2017.02.010. Epub 2017 Mar 27.
10
Mucus secretion and cytoskeletal modifications in cultured nasal epithelial cells exposed to wall shear stresses.
Biophys J. 2008 Sep 15;95(6):2998-3008. doi: 10.1529/biophysj.107.127142. Epub 2008 May 16.

引用本文的文献

3
Ascitic Shear Stress Activates GPCRs and Downregulates Mucin 15 to Promote OvarianCancer Malignancy.
Res Sq. 2024 Nov 25:rs.3.rs-5160301. doi: 10.21203/rs.3.rs-5160301/v1.
4
Spatial regulation of hydrogel polymerization reaction using ultrasound-driven streaming vortex.
Ultrason Sonochem. 2024 Nov;110:107053. doi: 10.1016/j.ultsonch.2024.107053. Epub 2024 Sep 4.
6
Advances in cancer mechanobiology: Metastasis, mechanics, and materials.
APL Bioeng. 2024 Mar 5;8(1):011502. doi: 10.1063/5.0186042. eCollection 2024 Mar.
7
Mechanical activation and expression of HSP27 in epithelial ovarian cancer.
Sci Rep. 2024 Feb 3;14(1):2856. doi: 10.1038/s41598-024-52992-7.
8
Transient fluid flow improves photoimmunoconjugate delivery and photoimmunotherapy efficacy.
iScience. 2023 Jun 26;26(8):107221. doi: 10.1016/j.isci.2023.107221. eCollection 2023 Aug 18.

本文引用的文献

1
Mechanophysical stimulations of mucin secretion in cultures of nasal epithelial cells.
Biophys J. 2011 Jun 22;100(12):2855-64. doi: 10.1016/j.bpj.2011.04.040.
2
Shear stress induces internalization of E-cadherin and invasiveness in metastatic oesophageal cancer cells by a Src-dependent pathway.
Cancer Sci. 2009 Jun;100(6):1082-7. doi: 10.1111/j.1349-7006.2009.01160.x. Epub 2009 Mar 16.
3
4
Mucus secretion and cytoskeletal modifications in cultured nasal epithelial cells exposed to wall shear stresses.
Biophys J. 2008 Sep 15;95(6):2998-3008. doi: 10.1529/biophysj.107.127142. Epub 2008 May 16.
5
Ovarian cancer.
Surg Clin North Am. 2008 Apr;88(2):285-99, vi. doi: 10.1016/j.suc.2007.12.002.
6
The forces behind cell movement.
Int J Biol Sci. 2007 Jun 1;3(5):303-17. doi: 10.7150/ijbs.3.303.
7
Extracellular pressure stimulates tumor cell adhesion in vitro by paxillin activation.
Cancer Biol Ther. 2006 Sep;5(9):1169-78. doi: 10.4161/cbt.5.9.3002. Epub 2006 Sep 6.
8
Mobility and invasiveness of metastatic esophageal cancer are potentiated by shear stress in a ROCK- and Ras-dependent manner.
Am J Physiol Cell Physiol. 2006 Oct;291(4):C668-77. doi: 10.1152/ajpcell.00626.2005. Epub 2006 Apr 26.
9
Shear stress regulates forward and reverse planar cell polarity of vascular endothelium in vivo and in vitro.
Circ Res. 2006 Apr 14;98(7):939-46. doi: 10.1161/01.RES.0000216595.15868.55. Epub 2006 Mar 9.
10
Morphological analysis of tumor cell/endothelial cell interactions under shear flow.
J Biomech. 2007;40(2):335-44. doi: 10.1016/j.jbiomech.2006.01.001. Epub 2006 Feb 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验