Suppr超能文献

基于模型的神经袖口电极分析与设计,用于通过选择性刺激阴部神经恢复膀胱功能。

Model-based analysis and design of nerve cuff electrodes for restoring bladder function by selective stimulation of the pudendal nerve.

机构信息

Department of Biomedical Engineering, Duke University, Durham, NC 27710, USA.

出版信息

J Neural Eng. 2013 Jun;10(3):036010. doi: 10.1088/1741-2560/10/3/036010. Epub 2013 Apr 18.

Abstract

OBJECTIVE

Electrical stimulation of the pudendal nerve (PN) is being developed as a means to restore bladder function in persons with spinal cord injury. A single nerve cuff electrode placed on the proximal PN trunk may enable selective stimulation of distinct fascicles to maintain continence or evoke micturition. The objective of this study was to design a nerve cuff that enabled selective stimulation of the PN.

APPROACH

We evaluated the performance of both flat interface nerve electrode (FINE) cuff and round cuff designs, with a range of FINE cuff heights and number of contacts, as well as multiple contact orientations. This analysis was performed using a computational model, in which the nerve and fascicle cross-sectional positions from five human PN trunks were systematically reshaped within the nerve cuff. These cross-sections were used to create finite element models, with electric potentials calculated and applied to a cable model of a myelinated axon to evaluate stimulation selectivity for different PN targets. Subsequently, the model was coupled to a genetic algorithm (GA) to identify solutions that used multiple contact activation to maximize selectivity and minimize total stimulation voltage.

MAIN RESULTS

Simulations did not identify any significant differences in selectivity between FINE and round cuffs, although the latter required smaller stimulation voltages for target activation due to preserved localization of targeted fascicle groups. Further, it was found that a ten contact nerve cuff generated sufficient selectivity for all PN targets, with the degree of selectivity dependent on the relative position of the target within the nerve. The GA identified solutions that increased fitness by 0.7-45.5% over single contact activation by decreasing stimulation of non-targeted fascicles.

SIGNIFICANCE

This study suggests that using an optimal nerve cuff design and multiple contact activation could enable selective stimulation of the human PN trunk for restoration of bladder function.

摘要

目的

阴部神经(PN)电刺激技术正在被开发为一种恢复脊髓损伤患者膀胱功能的方法。放置在 PN 近段干上的单个神经袖带电极可能能够选择性地刺激不同的神经束,以保持控尿或诱发排尿。本研究的目的是设计一种能够选择性刺激 PN 的神经袖带。

方法

我们评估了平面接口神经电极(FINE)袖带和圆形袖带设计的性能,包括 FINE 袖带的高度和接触点数的范围,以及多种接触方向。这项分析是使用计算模型进行的,在该模型中,从五个人的 PN 干中系统地重塑了神经和神经束的横截面位置。这些横截面被用来创建有限元模型,计算并施加到有髓鞘轴的电缆模型上,以评估不同 PN 目标的刺激选择性。随后,该模型被耦合到遗传算法(GA)中,以识别使用多个接触激活来最大化选择性和最小化总刺激电压的解决方案。

主要结果

模拟没有发现 FINE 和圆形袖带之间在选择性方面有任何显著差异,尽管后者由于目标神经束群的定位得以保留,因此需要较小的刺激电压来激活目标。此外,发现十个接触的神经袖带足以产生对所有 PN 目标的选择性,选择性的程度取决于目标在神经内的相对位置。GA 通过减少对非目标神经束的刺激,识别出了可以将适应性提高 0.7-45.5%的解决方案,而适应性的提高则取决于单个接触激活。

意义

这项研究表明,使用最佳的神经袖带设计和多个接触激活可能能够选择性地刺激人类 PN 干,以恢复膀胱功能。

相似文献

1
Model-based analysis and design of nerve cuff electrodes for restoring bladder function by selective stimulation of the pudendal nerve.
J Neural Eng. 2013 Jun;10(3):036010. doi: 10.1088/1741-2560/10/3/036010. Epub 2013 Apr 18.
2
Selectivity of multiple-contact nerve cuff electrodes: a simulation analysis.
IEEE Trans Biomed Eng. 2001 Feb;48(2):165-72. doi: 10.1109/10.909637.
3
A model of selective activation of the femoral nerve with a flat interface nerve electrode for a lower extremity neuroprosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2008 Apr;16(2):195-204. doi: 10.1109/TNSRE.2008.918425.
4
Bladder emptying by intermittent electrical stimulation of the pudendal nerve.
J Neural Eng. 2006 Mar;3(1):43-51. doi: 10.1088/1741-2560/3/1/005. Epub 2006 Jan 20.
5
Effect of contacts configuration and location on selective stimulation of cuff electrode.
Biomed Mater Eng. 2015;25(3):237-48. doi: 10.3233/BME-151281.
6
Restoration from acute urinary dysfunction using Utah electrode arrays implanted into the feline pudendal nerve.
Neuromodulation. 2015 Jun;18(4):317-23. doi: 10.1111/ner.12259. Epub 2014 Nov 28.
7
Minimizing Stimulus Current in a Wearable Pudendal Nerve Stimulator Using Computational Models.
IEEE Trans Neural Syst Rehabil Eng. 2016 Apr;24(4):506-15. doi: 10.1109/TNSRE.2015.2480755. Epub 2015 Sep 22.
8
Optimizing nerve cuff stimulation of targeted regions through use of genetic algorithms.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5811-4. doi: 10.1109/IEMBS.2011.6091438.
10
A novel implantation technique for pudendal nerve stimulation for treatment of overactive bladder and urgency incontinence.
J Minim Invasive Gynecol. 2014 Sep-Oct;21(5):888-92. doi: 10.1016/j.jmig.2014.03.026. Epub 2014 Apr 18.

引用本文的文献

1
Highly efficient modeling and optimization of neural fiber responses to electrical stimulation.
Nat Commun. 2024 Aug 31;15(1):7597. doi: 10.1038/s41467-024-51709-8.
2
Towards enhanced functionality of vagus neuroprostheses through in silico optimized stimulation.
Nat Commun. 2024 Jul 20;15(1):6119. doi: 10.1038/s41467-024-50523-6.
3
NRV: An open framework for in silico evaluation of peripheral nerve electrical stimulation strategies.
PLoS Comput Biol. 2024 Jul 12;20(7):e1011826. doi: 10.1371/journal.pcbi.1011826. eCollection 2024 Jul.
4
NRV: An open framework for evaluation of peripheral nerve electrical stimulation strategies.
bioRxiv. 2024 Jan 16:2024.01.15.575628. doi: 10.1101/2024.01.15.575628.
5
State-dependent bioelectronic interface to control bladder function.
Sci Rep. 2021 Jan 11;11(1):314. doi: 10.1038/s41598-020-79493-7.
6
Quantified Morphology of the Cervical and Subdiaphragmatic Vagus Nerves of Human, Pig, and Rat.
Front Neurosci. 2020 Nov 4;14:601479. doi: 10.3389/fnins.2020.601479. eCollection 2020.
7
Automatic three-dimensional reconstruction of fascicles in peripheral nerves from histological images.
PLoS One. 2020 May 14;15(5):e0233028. doi: 10.1371/journal.pone.0233028. eCollection 2020.
8
Flat electrode contacts for vagus nerve stimulation.
PLoS One. 2019 Nov 18;14(11):e0215191. doi: 10.1371/journal.pone.0215191. eCollection 2019.
9
Spike-Conducting Integrate-and-Fire Model.
eNeuro. 2018 Sep 7;5(4). doi: 10.1523/ENEURO.0112-18.2018. eCollection 2018 Jul-Aug.
10
Bionic intrafascicular interfaces for recording and stimulating peripheral nerve fibers.
Bioelectron Med (Lond). 2018 Jan;1(1):55-69. doi: 10.2217/bem-2017-0009. Epub 2017 Dec 14.

本文引用的文献

1
Optimizing nerve cuff stimulation of targeted regions through use of genetic algorithms.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:5811-4. doi: 10.1109/IEMBS.2011.6091438.
2
Probabilistic modeling of selective stimulation of the human sciatic nerve with a flat interface nerve electrode.
J Comput Neurosci. 2012 Aug;33(1):179-90. doi: 10.1007/s10827-011-0381-5. Epub 2012 Jan 6.
3
Plasticity of urinary bladder reflexes evoked by stimulation of pudendal afferent nerves after chronic spinal cord injury in cats.
Exp Neurol. 2011 Mar;228(1):109-17. doi: 10.1016/j.expneurol.2010.12.016. Epub 2010 Dec 28.
4
Energy-efficient waveform shapes for neural stimulation revealed with a genetic algorithm.
J Neural Eng. 2010 Aug;7(4):046009. doi: 10.1088/1741-2560/7/4/046009. Epub 2010 Jun 23.
5
Stimulation stability and selectivity of chronically implanted multicontact nerve cuff electrodes in the human upper extremity.
IEEE Trans Neural Syst Rehabil Eng. 2009 Oct;17(5):428-37. doi: 10.1109/TNSRE.2009.2032603. Epub 2009 Sep 22.
6
Fascicular perineurium thickness, size, and position affect model predictions of neural excitation.
IEEE Trans Neural Syst Rehabil Eng. 2008 Dec;16(6):572-81. doi: 10.1109/TNSRE.2008.2010348.
7
Bladder activation by selective stimulation of pudendal nerve afferents in the cat.
Exp Neurol. 2008 Jul;212(1):218-25. doi: 10.1016/j.expneurol.2008.04.010. Epub 2008 Apr 20.
8
Activation and inhibition of the micturition reflex by penile afferents in the cat.
Am J Physiol Regul Integr Comp Physiol. 2008 Jun;294(6):R1880-9. doi: 10.1152/ajpregu.00029.2008. Epub 2008 Apr 23.
9
A model of selective activation of the femoral nerve with a flat interface nerve electrode for a lower extremity neuroprosthesis.
IEEE Trans Neural Syst Rehabil Eng. 2008 Apr;16(2):195-204. doi: 10.1109/TNSRE.2008.918425.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验