Jung Ranu, Abbas James J, Kuntaegowdanahalli Sathyakumar, Thota Anil K
Department of Biomedical Engineering, Florida International University, EC2602, 10555 W Flagler Street, Miami, FL 33134, USA.
Center for Adaptive Neural Systems, School of Biological & Health Systems Engineering, PO Box 879709 Arizona State University, Tempe, AZ 85287-9709, USA.
Bioelectron Med (Lond). 2018 Jan;1(1):55-69. doi: 10.2217/bem-2017-0009. Epub 2017 Dec 14.
The network of peripheral nerves presents extraordinary potential for modulating and/or monitoring the functioning of internal organs or the brain. The degree to which these pathways can be used to influence or observe neural activity patterns will depend greatly on the quality and specificity of the bionic interface. The anatomical organization, which consists of multiple nerve fibers clustered into fascicles within a nerve bundle, presents opportunities and challenges that may necessitate insertion of electrodes into individual fascicles to achieve the specificity that may be required for many clinical applications. This manuscript reviews the current state-of-the-art in bionic intrafascicular interfaces, presents specific concerns for stimulation and recording, describes key implementation considerations and discusses challenges for future designs of bionic intrafascicular interfaces.
外周神经网络在调节和/或监测内部器官或大脑功能方面具有巨大潜力。这些神经通路可用于影响或观察神经活动模式的程度,将在很大程度上取决于仿生接口的质量和特异性。由多条神经纤维聚集成神经束内的束状结构的解剖组织,既带来了机遇,也带来了挑战,这可能需要将电极插入单个束状结构中,以实现许多临床应用可能所需的特异性。本文综述了仿生束内接口的当前技术水平,提出了刺激和记录方面的具体问题,描述了关键的实施要点,并讨论了仿生束内接口未来设计面临的挑战。