Suppr超能文献

用于记录和刺激外周神经纤维的仿生束内接口。

Bionic intrafascicular interfaces for recording and stimulating peripheral nerve fibers.

作者信息

Jung Ranu, Abbas James J, Kuntaegowdanahalli Sathyakumar, Thota Anil K

机构信息

Department of Biomedical Engineering, Florida International University, EC2602, 10555 W Flagler Street, Miami, FL 33134, USA.

Center for Adaptive Neural Systems, School of Biological & Health Systems Engineering, PO Box 879709 Arizona State University, Tempe, AZ 85287-9709, USA.

出版信息

Bioelectron Med (Lond). 2018 Jan;1(1):55-69. doi: 10.2217/bem-2017-0009. Epub 2017 Dec 14.

Abstract

The network of peripheral nerves presents extraordinary potential for modulating and/or monitoring the functioning of internal organs or the brain. The degree to which these pathways can be used to influence or observe neural activity patterns will depend greatly on the quality and specificity of the bionic interface. The anatomical organization, which consists of multiple nerve fibers clustered into fascicles within a nerve bundle, presents opportunities and challenges that may necessitate insertion of electrodes into individual fascicles to achieve the specificity that may be required for many clinical applications. This manuscript reviews the current state-of-the-art in bionic intrafascicular interfaces, presents specific concerns for stimulation and recording, describes key implementation considerations and discusses challenges for future designs of bionic intrafascicular interfaces.

摘要

外周神经网络在调节和/或监测内部器官或大脑功能方面具有巨大潜力。这些神经通路可用于影响或观察神经活动模式的程度,将在很大程度上取决于仿生接口的质量和特异性。由多条神经纤维聚集成神经束内的束状结构的解剖组织,既带来了机遇,也带来了挑战,这可能需要将电极插入单个束状结构中,以实现许多临床应用可能所需的特异性。本文综述了仿生束内接口的当前技术水平,提出了刺激和记录方面的具体问题,描述了关键的实施要点,并讨论了仿生束内接口未来设计面临的挑战。

相似文献

1
Bionic intrafascicular interfaces for recording and stimulating peripheral nerve fibers.
Bioelectron Med (Lond). 2018 Jan;1(1):55-69. doi: 10.2217/bem-2017-0009. Epub 2017 Dec 14.
2
Fascicle specific targeting for selective peripheral nerve stimulation.
J Neural Eng. 2019 Nov 11;16(6):066040. doi: 10.1088/1741-2552/ab4370.
4
A system and method to interface with multiple groups of axons in several fascicles of peripheral nerves.
J Neurosci Methods. 2015 Apr 15;244:78-84. doi: 10.1016/j.jneumeth.2014.07.020. Epub 2014 Aug 1.
5
Development of a novel intrafascicular nerve electrode.
ASAIO J. 2005 Nov-Dec;51(6):692-5. doi: 10.1097/01.mat.0000172123.18016.16.
6
Bidirectional interfaces with the peripheral nervous system.
Int Rev Neurobiol. 2009;86:23-38. doi: 10.1016/S0074-7742(09)86002-9.
8
9
A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve.
Biosens Bioelectron. 2010 Sep 15;26(1):62-9. doi: 10.1016/j.bios.2010.05.010. Epub 2010 May 11.
10
Tutorial: a computational framework for the design and optimization of peripheral neural interfaces.
Nat Protoc. 2020 Oct;15(10):3129-3153. doi: 10.1038/s41596-020-0377-6. Epub 2020 Sep 28.

引用本文的文献

2
Recent advances in facilitating the translation of bioelectronic medicine therapies.
Curr Opin Biomed Eng. 2025 Mar;33. doi: 10.1016/j.cobme.2024.100575. Epub 2024 Dec 20.
3
Accelerating neurotechnology development using an Agile methodology.
Front Neurosci. 2024 Feb 16;18:1328540. doi: 10.3389/fnins.2024.1328540. eCollection 2024.
5
The Need to Work Arm in Arm: Calling for Collaboration in Delivering Neuroprosthetic Limb Replacements.
Front Neurorobot. 2021 Jul 21;15:711028. doi: 10.3389/fnbot.2021.711028. eCollection 2021.
6
Utilizing prosthetic technology to improve quality of life: an interview with Ranu Jung and James Abbas.
Bioelectron Med (Lond). 2020 Apr;2(3):123-126. doi: 10.2217/bem-2020-0002. Epub 2020 Apr 17.
7
Advanced technologies for intuitive control and sensation of prosthetics.
Biomed Eng Lett. 2019 Aug 8;10(1):119-128. doi: 10.1007/s13534-019-00127-7. eCollection 2020 Feb.
8
Interfaces with the peripheral nervous system for the control of a neuroprosthetic limb: a review.
J Neuroeng Rehabil. 2020 Mar 10;17(1):43. doi: 10.1186/s12984-020-00667-5.
9
Remote Stimulation of Sciatic Nerve Using Cuff Electrodes and Implanted Diodes.
Micromachines (Basel). 2018 Nov 14;9(11):595. doi: 10.3390/mi9110595.
10
The development of neural stimulators: a review of preclinical safety and efficacy studies.
J Neural Eng. 2018 Aug;15(4):041004. doi: 10.1088/1741-2552/aac43c. Epub 2018 May 14.

本文引用的文献

2
Invasive Intraneural Interfaces: Foreign Body Reaction Issues.
Front Neurosci. 2017 Sep 6;11:497. doi: 10.3389/fnins.2017.00497. eCollection 2017.
3
"Long-term stability of stimulating spiral nerve cuff electrodes on human peripheral nerves".
J Neuroeng Rehabil. 2017 Jul 11;14(1):70. doi: 10.1186/s12984-017-0285-3.
4
Recording nerve signals in canine sciatic nerves with a flexible penetrating microelectrode array.
J Neural Eng. 2017 Aug;14(4):046023. doi: 10.1088/1741-2552/aa7493.
5
Clinical applications of penetrating neural interfaces and Utah Electrode Array technologies.
J Neural Eng. 2016 Dec;13(6):061003. doi: 10.1088/1741-2560/13/6/061003. Epub 2016 Oct 20.
6
Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis.
Proc Natl Acad Sci U S A. 2016 Jul 19;113(29):8284-9. doi: 10.1073/pnas.1605635113. Epub 2016 Jul 5.
10
Respiratory neuromodulation in patients with neurological pathologies: for whom and how?
Ann Phys Rehabil Med. 2015 Sep;58(4):238-244. doi: 10.1016/j.rehab.2015.07.001. Epub 2015 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验