Suppr超能文献

基于 MEMS 的力钳分析在秀丽隐杆线虫触觉中的体刚性作用。

MEMS-based force-clamp analysis of the role of body stiffness in C. elegans touch sensation.

机构信息

Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA.

出版信息

Integr Biol (Camb). 2013 Jun;5(6):853-64. doi: 10.1039/c3ib20293c.

Abstract

Touch is enabled by mechanoreceptor neurons in the skin and plays an essential role in our everyday lives, but is among the least understood of our five basic senses. Force applied to the skin deforms these neurons and activates ion channels within them. Despite the importance of the mechanics of the skin in determining mechanoreceptor neuron deformation and ultimately touch sensation, the role of mechanics in touch sensitivity is poorly understood. Here, we use the model organism Caenorhabditis elegans to directly test the hypothesis that body mechanics modulate touch sensitivity. We demonstrate a microelectromechanical system (MEMS)-based force clamp that can apply calibrated forces to freely crawling C. elegans worms and measure touch-evoked avoidance responses. This approach reveals that wild-type animals sense forces <1 μN and indentation depths <1 μm. We use both genetic manipulation of the skin and optogenetic modulation of body wall muscles to alter body mechanics. We find that small changes in body stiffness dramatically affect force sensitivity, while having only modest effects on indentation sensitivity. We investigate the theoretical body deformation predicted under applied force and conclude that local mechanical loads induce inward bending deformation of the skin to drive touch sensation in C. elegans.

摘要

触觉是由皮肤中的机械感受器神经元实现的,在我们的日常生活中起着至关重要的作用,但它却是我们五种基本感觉中了解最少的一种。施加在皮肤上的力会使这些神经元变形,并激活它们内部的离子通道。尽管皮肤力学在确定机械感受器神经元变形并最终决定触觉方面非常重要,但力学在触觉敏感性中的作用仍知之甚少。在这里,我们使用模式生物秀丽隐杆线虫来直接检验这样一个假设,即身体力学可以调节触觉敏感性。我们展示了一种基于微机电系统(MEMS)的力钳,可以对自由爬行的秀丽隐杆线虫施加校准力,并测量触觉诱发的回避反应。这种方法表明,野生型动物可以感知<1 μN 的力和<1 μm 的缩进深度。我们既利用皮肤的遗传操作,也利用体壁肌肉的光遗传学调节来改变身体力学。我们发现,身体刚度的微小变化会极大地影响力的敏感性,而对缩进的敏感性只有适度的影响。我们研究了在施加力下预测的身体变形理论,并得出结论,局部机械负荷会引起皮肤向内弯曲变形,从而在秀丽隐杆线虫中产生触觉。

相似文献

1
MEMS-based force-clamp analysis of the role of body stiffness in C. elegans touch sensation.
Integr Biol (Camb). 2013 Jun;5(6):853-64. doi: 10.1039/c3ib20293c.
2
Forces applied during classical touch assays for Caenorhabditis elegans.
PLoS One. 2017 May 19;12(5):e0178080. doi: 10.1371/journal.pone.0178080. eCollection 2017.
4
Determining the biomechanics of touch sensation in C. elegans.
Sci Rep. 2017 Sep 26;7(1):12329. doi: 10.1038/s41598-017-12190-0.
6
The tactile receptive fields of freely moving Caenorhabditis elegans nematodes.
Integr Biol (Camb). 2018 Aug 1;10(8):450-463. doi: 10.1039/c8ib00045j. Epub 2018 Jul 20.
7
Mechanosensory molecules and circuits in C. elegans.
Pflugers Arch. 2015 Jan;467(1):39-48. doi: 10.1007/s00424-014-1574-3. Epub 2014 Jul 23.
8
Mechanical systems biology of C. elegans touch sensation.
Bioessays. 2015 Mar;37(3):335-44. doi: 10.1002/bies.201400154. Epub 2015 Jan 19.
9
Touch-induced mechanical strain in somatosensory neurons is independent of extracellular matrix mutations in .
Mol Biol Cell. 2020 Jul 21;31(16):1735-1743. doi: 10.1091/mbc.E20-01-0049. Epub 2020 Jun 24.

引用本文的文献

1
C. elegans touch receptor neurons direct mechanosensory complex organization via repurposing conserved basal lamina proteins.
Curr Biol. 2024 Jul 22;34(14):3133-3151.e10. doi: 10.1016/j.cub.2024.06.013. Epub 2024 Jul 3.
2
Mechanotransduction in hippocampal neurons operates under localized low picoNewton forces.
iScience. 2022 Jan 25;25(2):103807. doi: 10.1016/j.isci.2022.103807. eCollection 2022 Feb 18.
3
A high-throughput method to deliver targeted optogenetic stimulation to moving C. elegans populations.
PLoS Biol. 2022 Jan 28;20(1):e3001524. doi: 10.1371/journal.pbio.3001524. eCollection 2022 Jan.
4
Novel elasticity measurements reveal C. elegans cuticle stiffens with age and in a long-lived mutant.
Biophys J. 2022 Feb 15;121(4):515-524. doi: 10.1016/j.bpj.2022.01.013. Epub 2022 Jan 19.
7
Extending the Capabilities of Molecular Force Sensors via DNA Nanotechnology.
Crit Rev Biomed Eng. 2020;48(1):1-16. doi: 10.1615/CritRevBiomedEng.2020033450.
8
Touch-induced mechanical strain in somatosensory neurons is independent of extracellular matrix mutations in .
Mol Biol Cell. 2020 Jul 21;31(16):1735-1743. doi: 10.1091/mbc.E20-01-0049. Epub 2020 Jun 24.
10
Progressive recruitment of distal MEC-4 channels determines touch response strength in .
J Gen Physiol. 2019 Oct 7;151(10):1213-1230. doi: 10.1085/jgp.201912374. Epub 2019 Sep 18.

本文引用的文献

1
Estimating efficacy and drug ED50's using von Frey thresholds: impact of weber's law and log transformation.
J Pain. 2012 Jun;13(6):519-23. doi: 10.1016/j.jpain.2012.02.009. Epub 2012 Apr 28.
3
Piezoresistive cantilever force-clamp system.
Rev Sci Instrum. 2011 Apr;82(4):043703. doi: 10.1063/1.3574362.
4
Caenorhabditis elegans body mechanics are regulated by body wall muscle tone.
Biophys J. 2011 Apr 20;100(8):1977-85. doi: 10.1016/j.bpj.2011.02.035.
5
Optogenetic manipulation of neural activity in freely moving Caenorhabditis elegans.
Nat Methods. 2011 Feb;8(2):147-52. doi: 10.1038/nmeth.1554. Epub 2011 Jan 16.
6
Real-time multimodal optical control of neurons and muscles in freely behaving Caenorhabditis elegans.
Nat Methods. 2011 Feb;8(2):153-8. doi: 10.1038/nmeth.1555. Epub 2011 Jan 16.
7
Biomechanical analysis of gait adaptation in the nematode Caenorhabditis elegans.
Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20323-8. doi: 10.1073/pnas.1003016107. Epub 2010 Nov 3.
8
Material properties of Caenorhabditis elegans swimming at low Reynolds number.
Biophys J. 2010 Feb 17;98(4):617-26. doi: 10.1016/j.bpj.2009.11.010.
9
Genetic analysis of crawling and swimming locomotory patterns in C. elegans.
Proc Natl Acad Sci U S A. 2008 Dec 30;105(52):20982-7. doi: 10.1073/pnas.0810359105. Epub 2008 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验