Department of Mechanical Engineering, Stanford University School of Engineering, Stanford, California, USA.
Integr Biol (Camb). 2013 Jun;5(6):853-64. doi: 10.1039/c3ib20293c.
Touch is enabled by mechanoreceptor neurons in the skin and plays an essential role in our everyday lives, but is among the least understood of our five basic senses. Force applied to the skin deforms these neurons and activates ion channels within them. Despite the importance of the mechanics of the skin in determining mechanoreceptor neuron deformation and ultimately touch sensation, the role of mechanics in touch sensitivity is poorly understood. Here, we use the model organism Caenorhabditis elegans to directly test the hypothesis that body mechanics modulate touch sensitivity. We demonstrate a microelectromechanical system (MEMS)-based force clamp that can apply calibrated forces to freely crawling C. elegans worms and measure touch-evoked avoidance responses. This approach reveals that wild-type animals sense forces <1 μN and indentation depths <1 μm. We use both genetic manipulation of the skin and optogenetic modulation of body wall muscles to alter body mechanics. We find that small changes in body stiffness dramatically affect force sensitivity, while having only modest effects on indentation sensitivity. We investigate the theoretical body deformation predicted under applied force and conclude that local mechanical loads induce inward bending deformation of the skin to drive touch sensation in C. elegans.
触觉是由皮肤中的机械感受器神经元实现的,在我们的日常生活中起着至关重要的作用,但它却是我们五种基本感觉中了解最少的一种。施加在皮肤上的力会使这些神经元变形,并激活它们内部的离子通道。尽管皮肤力学在确定机械感受器神经元变形并最终决定触觉方面非常重要,但力学在触觉敏感性中的作用仍知之甚少。在这里,我们使用模式生物秀丽隐杆线虫来直接检验这样一个假设,即身体力学可以调节触觉敏感性。我们展示了一种基于微机电系统(MEMS)的力钳,可以对自由爬行的秀丽隐杆线虫施加校准力,并测量触觉诱发的回避反应。这种方法表明,野生型动物可以感知<1 μN 的力和<1 μm 的缩进深度。我们既利用皮肤的遗传操作,也利用体壁肌肉的光遗传学调节来改变身体力学。我们发现,身体刚度的微小变化会极大地影响力的敏感性,而对缩进的敏感性只有适度的影响。我们研究了在施加力下预测的身体变形理论,并得出结论,局部机械负荷会引起皮肤向内弯曲变形,从而在秀丽隐杆线虫中产生触觉。