Mazzochette E A, Nekimken A L, Loizeau F, Whitworth J, Huynh B, Goodman M B, Pruitt B L
Department of Electrical Engineering, Stanford University, 94305, USA.
Department of Mechanical Engineering, Stanford University, 94305, USA.
Integr Biol (Camb). 2018 Aug 1;10(8):450-463. doi: 10.1039/c8ib00045j. Epub 2018 Jul 20.
Sensory neurons embedded in skin are responsible for the sense of touch. In humans and other mammals, touch sensation depends on thousands of diverse somatosensory neurons. By contrast, Caenorhabditis elegans nematodes have six gentle touch receptor neurons linked to simple behaviors. The classical touch assay uses an eyebrow hair to stimulate freely moving C. elegans, evoking evasive behavioral responses. This assay has led to the discovery of genes required for touch sensation, but does not provide control over stimulus strength or position. Here, we present an integrated system for performing automated, quantitative touch assays that circumvents these limitations and incorporates automated measurements of behavioral responses. The Highly Automated Worm Kicker (HAWK) unites a microfabricated silicon force sensor holding a glass bead forming the contact surface and video analysis with real-time force and position control. Using this system, we stimulated animals along the anterior-posterior axis and compared responses in wild-type and spc-1(dn) transgenic animals, which have a touch defect due to expression of a dominant-negative α-spectrin protein fragment. As expected from prior studies, delivering large stimuli anterior and posterior to the mid-point of the body evoked a reversal and a speed-up, respectively. The probability of evoking a response of either kind depended on stimulus strength and location; once initiated, the magnitude and quality of both reversal and speed-up behavioral responses were uncorrelated with stimulus location, strength, or the absence or presence of the spc-1(dn) transgene. Wild-type animals failed to respond when the stimulus was applied near the mid-point. These results show that stimulus strength and location govern the activation of a characteristic motor program and that the C. elegans body surface consists of two receptive fields separated by a gap.
嵌入皮肤的感觉神经元负责触觉。在人类和其他哺乳动物中,触觉依赖于数千种不同的躯体感觉神经元。相比之下,秀丽隐杆线虫只有六个与简单行为相关的轻触受体神经元。经典的触觉测定法使用眉毛毛发刺激自由移动的秀丽隐杆线虫,引发逃避行为反应。这种测定法已导致发现了触觉所需的基因,但无法控制刺激强度或位置。在这里,我们提出了一个用于执行自动化、定量触觉测定的集成系统,该系统克服了这些限制,并纳入了行为反应的自动测量。高度自动化的蠕虫踢器(HAWK)将一个微制造的硅力传感器与一个形成接触表面的玻璃珠以及具有实时力和位置控制的视频分析结合在一起。使用该系统,我们沿着前后轴刺激动物,并比较了野生型和spc-1(dn)转基因动物的反应,后者由于表达显性负性α-血影蛋白片段而存在触觉缺陷。正如先前研究所预期的那样,在身体中点前后施加较大刺激分别会引起后退和加速。引发任何一种反应的概率取决于刺激强度和位置;一旦启动,后退和加速行为反应的幅度和质量与刺激位置、强度或spc-1(dn)转基因的有无无关。当在中点附近施加刺激时,野生型动物没有反应。这些结果表明,刺激强度和位置决定了一个特征性运动程序的激活,并且秀丽隐杆线虫的体表由两个被间隙隔开的感受野组成。