Suppr超能文献

基于隐马尔可夫模型的算法,用于从热波动数据评估受体-配体结合动力学速率。

An HMM-based algorithm for evaluating rates of receptor-ligand binding kinetics from thermal fluctuation data.

机构信息

Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta 30318, USA.

出版信息

Bioinformatics. 2013 Jun 15;29(12):1511-8. doi: 10.1093/bioinformatics/btt180. Epub 2013 Apr 18.

Abstract

MOTIVATION

Abrupt reduction/resumption of thermal fluctuations of a force probe has been used to identify association/dissociation events of protein-ligand bonds. We show that off-rate of molecular dissociation can be estimated by the analysis of the bond lifetime, while the on-rate of molecular association can be estimated by the analysis of the waiting time between two neighboring bond events. However, the analysis relies heavily on subjective judgments and is time-consuming. To automate the process of mapping out bond events from thermal fluctuation data, we develop a hidden Markov model (HMM)-based method.

RESULTS

The HMM method represents the bond state by a hidden variable with two values: bound and unbound. The bond association/dissociation is visualized and pinpointed. We apply the method to analyze a key receptor-ligand interaction in the early stage of hemostasis and thrombosis: the von Willebrand factor (VWF) binding to platelet glycoprotein Ibα (GPIbα). The numbers of bond lifetime and waiting time events estimated by the HMM are much more than those estimated by a descriptive statistical method from the same set of raw data. The kinetic parameters estimated by the HMM are in excellent agreement with those by a descriptive statistical analysis, but have much smaller errors for both wild-type and two mutant VWF-A1 domains. Thus, the computerized analysis allows us to speed up the analysis and improve the quality of estimates of receptor-ligand binding kinetics.

摘要

动机

力探针的热涨落的突然减少/恢复已被用于鉴定蛋白-配体键的结合/解离事件。我们表明,通过分析键的寿命,可以估计分子解离的离解速率,而通过分析两个相邻键事件之间的等待时间,可以估计分子缔合的成键速率。然而,该分析严重依赖于主观判断且耗时。为了实现从热波动数据中自动映射键事件的过程,我们开发了一种基于隐马尔可夫模型(HMM)的方法。

结果

HMM 方法通过具有两个值的隐变量来表示键状态:结合和未结合。键的结合/解离可视化并精确定位。我们将该方法应用于分析止血和血栓形成早期的一个关键受体-配体相互作用:血管性血友病因子(VWF)与血小板糖蛋白 Ibα(GPIbα)的结合。由 HMM 估计的键寿命和等待时间事件的数量远多于从同一组原始数据通过描述性统计方法估计的数量。由 HMM 估计的动力学参数与描述性统计分析非常吻合,但对于野生型和两种突变型 VWF-A1 结构域,误差都小得多。因此,计算机化分析可以加快分析速度并提高受体-配体结合动力学的估计质量。

相似文献

4

本文引用的文献

3
6
Molecular stiffness of selectins.选择素的分子刚性。
J Biol Chem. 2011 Mar 18;286(11):9567-76. doi: 10.1074/jbc.M110.196485. Epub 2011 Jan 7.
10

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验