School of Optometry, University of California, Berkeley, California, USA.
Am J Ophthalmol. 2013 Jun;155(6):961-970.e2. doi: 10.1016/j.ajo.2013.03.001. Epub 2013 Apr 17.
To provide our perspective on why the cornea is resistant to infection based on our research results with Pseudomonas (P) aeruginosa. We focus on our current understanding of the interplay between bacteria, tear fluid, and the corneal epithelium that determines health as the usual outcome, and propose a theoretical model for how contact lens wear might change those interactions to enable susceptibility to P aeruginosa infection.
Use of "null-infection" in vivo models, cultured human corneal epithelial cells, contact lens-wearing animal models, and bacterial genetics help to elucidate mechanisms by which P aeruginosa survives at the ocular surface, adheres, and traverses multilayered corneal epithelia. These models also help elucidate the molecular mechanisms of corneal epithelial innate defense.
Tear fluid and the corneal epithelium combine to make a formidable defense against P aeruginosa infection of the cornea. Part of that defense involves the expression of antimicrobials such as β-defensins, the cathelicidin LL-37, cytokeratin-derived antimicrobial peptides, and RNase7. Immunomodulators such as SP-D and ST2 also contribute. Innate defenses of the cornea depend in part on MyD88, a key adaptor protein of TLR and IL-1R signaling, but the basal lamina represents the final barrier to bacterial penetration. Overcoming these defenses involves P aeruginosa adaptation, expression of the type III secretion system, proteases, and P aeruginosa biofilm formation on contact lenses.
After more than 2 decades of research focused on understanding how contact lens wear predisposes to P aeruginosa infection, our working hypothesis places blame for microbial keratitis on bacterial adaptation to ocular surface defenses, combined with changes to the biochemistry of the corneal surface caused by trapping bacteria and tear fluid against the cornea under the lens.
根据我们在绿脓杆菌(P)研究中的结果,提供我们对角膜为何具有抗感染能力的看法。我们专注于当前对细菌、泪液和角膜上皮之间相互作用的理解,这些作用决定了通常的健康结果,并提出一个理论模型,说明隐形眼镜佩戴如何改变这些相互作用,从而使角膜容易感染绿脓杆菌。
使用“无感染”的体内模型、培养的人角膜上皮细胞、佩戴隐形眼镜的动物模型和细菌遗传学,有助于阐明绿脓杆菌在眼表存活、黏附和穿透多层角膜上皮的机制。这些模型还有助于阐明角膜上皮固有防御的分子机制。
泪液和角膜上皮共同构成了抵御绿脓杆菌感染角膜的强大防线。部分防御机制涉及抗菌肽如β-防御素、抗菌肽 LL-37、细胞角蛋白衍生的抗菌肽和 RNase7 的表达。免疫调节剂如 SP-D 和 ST2 也有贡献。角膜的先天防御部分依赖于 MyD88,MyD88 是 TLR 和 IL-1R 信号转导的关键衔接蛋白,但基底膜是细菌穿透的最后一道屏障。克服这些防御机制涉及绿脓杆菌的适应、III 型分泌系统、蛋白酶的表达以及隐形眼镜上绿脓杆菌生物膜的形成。
经过 20 多年的研究,重点是了解隐形眼镜佩戴如何使绿脓杆菌感染易感性增加,我们的工作假设将微生物角膜炎归咎于细菌对眼表防御的适应,以及由于隐形眼镜下的细菌和泪液被困在角膜表面而导致角膜表面生物化学的变化。