Suppr超能文献

藻产生的霍乱毒素-Pfs25 融合蛋白作为口服疫苗。

Alga-produced cholera toxin-Pfs25 fusion proteins as oral vaccines.

机构信息

Division of Biological Sciences and the San Diego Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, USA.

出版信息

Appl Environ Microbiol. 2013 Jul;79(13):3917-25. doi: 10.1128/AEM.00714-13. Epub 2013 Apr 19.

Abstract

Infectious diseases disproportionately affect indigent regions and are the greatest cause of childhood mortality in developing countries. Practical, low-cost vaccines for use in these countries are paramount to reducing disease burdens and concomitant poverty. Algae are a promising low-cost system for producing vaccines that can be orally delivered, thereby avoiding expensive purification and injectable delivery. We engineered the chloroplast of the eukaryotic alga Chlamydomonas reinhardtii to produce a chimeric protein consisting of the 25-kDa Plasmodium falciparum surface protein (Pfs25) fused to the β subunit of the cholera toxin (CtxB) to investigate an alga-based whole-cell oral vaccine. Pfs25 is a promising malaria transmission-blocking vaccine candidate that has been difficult to produce in traditional recombinant systems due to its structurally complex tandem repeats of epidermal growth factor-like domains. The noncatalytic CtxB domain of the cholera holotoxin assembles into a pentameric structure and acts as a mucosal adjuvant by binding GM1 ganglioside receptors on gut epithelial cells. We demonstrate that CtxB-Pfs25 accumulates as a soluble, properly folded and functional protein within algal chloroplasts, and it is stable in freeze-dried alga cells at ambient temperatures. In mice, oral vaccination using freeze-dried algae that produce CtxB-Pfs25 elicited CtxB-specific serum IgG antibodies and both CtxB- and Pfs25-specific secretory IgA antibodies. These data suggest that algae are a promising system for production and oral delivery of vaccine antigens, but as an orally delivered adjuvant, CtxB is best suited for eliciting secretory IgA antibodies for vaccine antigens against pathogens that invade mucosal surfaces using this strategy.

摘要

传染病不成比例地影响贫困地区,是发展中国家儿童死亡的最大原因。在这些国家,实用、低成本的疫苗对于减轻疾病负担和随之而来的贫困至关重要。藻类是一种很有前途的低成本系统,可以生产可口服的疫苗,从而避免昂贵的纯化和注射式给药。我们对真核藻类莱茵衣藻的叶绿体进行了工程改造,以生产一种嵌合蛋白,该蛋白由 25kDa 疟原虫表面蛋白(Pfs25)与霍乱毒素(CtxB)β亚基融合而成,用于研究基于藻类的全细胞口服疫苗。Pfs25 是一种很有前途的疟疾传播阻断疫苗候选物,由于其结构复杂的表皮生长因子样结构域串联重复,在传统的重组系统中很难生产。霍乱全毒素的非催化 CtxB 结构域组装成五聚体结构,并通过与肠道上皮细胞上的 GM1 神经节苷脂受体结合,作为一种粘膜佐剂。我们证明 CtxB-Pfs25 在藻类叶绿体中积累为一种可溶性、正确折叠和功能蛋白,并且在环境温度下在冻干藻类细胞中稳定。在小鼠中,使用生产 CtxB-Pfs25 的冻干藻类进行口服免疫接种可引起 CtxB 特异性血清 IgG 抗体以及 CtxB 和 Pfs25 特异性分泌型 IgA 抗体。这些数据表明藻类是生产和口服递疫苗抗原的很有前途的系统,但作为口服递佐剂,CtxB 最适合通过这种策略引发针对侵袭粘膜表面的病原体的疫苗抗原的分泌型 IgA 抗体。

相似文献

1
Alga-produced cholera toxin-Pfs25 fusion proteins as oral vaccines.
Appl Environ Microbiol. 2013 Jul;79(13):3917-25. doi: 10.1128/AEM.00714-13. Epub 2013 Apr 19.
2
Algae-produced Pfs25 elicits antibodies that inhibit malaria transmission.
PLoS One. 2012;7(5):e37179. doi: 10.1371/journal.pone.0037179. Epub 2012 May 16.
4
Chloroplast-derived vaccine antigens confer dual immunity against cholera and malaria by oral or injectable delivery.
Plant Biotechnol J. 2010 Feb;8(2):223-42. doi: 10.1111/j.1467-7652.2009.00479.x. Epub 2009 Dec 28.
7
Engineering the chloroplast of Chlamydomonas reinhardtii to express the recombinant PfCelTOS-Il2 antigen-adjuvant fusion protein.
J Biotechnol. 2018 Jan 20;266:111-117. doi: 10.1016/j.jbiotec.2017.12.015. Epub 2017 Dec 19.
8
A novel plant-produced Pfs25 fusion subunit vaccine induces long-lasting transmission blocking antibody responses.
Hum Vaccin Immunother. 2015;11(1):124-32. doi: 10.4161/hv.34366. Epub 2014 Nov 1.
9
Fusion-expressed CtxB-TcpA-C-CPE improves both systemic and mucosal humoral and T-cell responses against cholera in mice.
Microb Pathog. 2021 Aug;157:104978. doi: 10.1016/j.micpath.2021.104978. Epub 2021 May 19.

引用本文的文献

1
Protein Expression Platforms and the Challenges of Viral Antigen Production.
Vaccines (Basel). 2024 Nov 28;12(12):1344. doi: 10.3390/vaccines12121344.
2
L-gulono-γ-lactone Oxidase, the Key Enzyme for L-Ascorbic Acid Biosynthesis.
Curr Issues Mol Biol. 2024 Oct 1;46(10):11057-11074. doi: 10.3390/cimb46100657.
3
FcRider: a recombinant Fc nanoparticle with endogenous adjuvant activities for hybrid immunization.
Antib Ther. 2024 Sep 6;7(4):295-306. doi: 10.1093/abt/tbae023. eCollection 2024 Oct.
4
Harnessing the potential of microalgae for the production of monoclonal antibodies and other recombinant proteins.
Protoplasma. 2024 Nov;261(6):1105-1125. doi: 10.1007/s00709-024-01967-6. Epub 2024 Jul 6.
5
Challenges and Opportunities in the Process Development of Chimeric Vaccines.
Vaccines (Basel). 2023 Dec 8;11(12):1828. doi: 10.3390/vaccines11121828.
6
Perspectives of cyanobacterial cell factories.
Photosynth Res. 2024 Dec;162(2-3):459-471. doi: 10.1007/s11120-023-01056-4. Epub 2023 Nov 15.
7
Edible microalgae: potential candidate for developing edible vaccines.
Vegetos. 2023 Apr 27:1-6. doi: 10.1007/s42535-023-00636-y.
8
Spray Drying Is a Viable Technology for the Preservation of Recombinant Proteins in Microalgae.
Microorganisms. 2023 Feb 17;11(2):512. doi: 10.3390/microorganisms11020512.
9
: A Factory of Nutraceutical and Food Supplements for Human Health.
Molecules. 2023 Jan 25;28(3):1185. doi: 10.3390/molecules28031185.
10
Three Parts of the Plant Genome: On the Way to Success in the Production of Recombinant Proteins.
Plants (Basel). 2022 Dec 21;12(1):38. doi: 10.3390/plants12010038.

本文引用的文献

1
Production of unique immunotoxin cancer therapeutics in algal chloroplasts.
Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):E15-22. doi: 10.1073/pnas.1214638110. Epub 2012 Dec 10.
3
Algae-produced Pfs25 elicits antibodies that inhibit malaria transmission.
PLoS One. 2012;7(5):e37179. doi: 10.1371/journal.pone.0037179. Epub 2012 May 16.
4
Heterologous expression of the C-terminal antigenic domain of the malaria vaccine candidate Pfs48/45 in the green algae Chlamydomonas reinhardtii.
Appl Microbiol Biotechnol. 2013 Mar;97(5):1987-95. doi: 10.1007/s00253-012-4071-7. Epub 2012 May 18.
5
Vaccines against mucosal infections.
Curr Opin Immunol. 2012 Jun;24(3):343-53. doi: 10.1016/j.coi.2012.03.014. Epub 2012 May 12.
6
"IDEAL" vaccines for resource poor settings.
Vaccine. 2011 Dec 30;29 Suppl 4:D116-25. doi: 10.1016/j.vaccine.2011.11.090.
7
The evil circle of poverty: a qualitative study of malaria and disability.
Malar J. 2012 Jan 11;11:15. doi: 10.1186/1475-2875-11-15.
9
Exploiting mucosal surfaces for the development of mucosal vaccines.
Vaccine. 2011 Nov 3;29(47):8506-11. doi: 10.1016/j.vaccine.2011.09.010. Epub 2011 Sep 22.
10
Technoeconomic analysis of five microalgae-to-biofuels processes of varying complexity.
Bioresour Technol. 2011 Oct;102(20):9350-9. doi: 10.1016/j.biortech.2011.08.010. Epub 2011 Aug 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验