Suppr超能文献

在极端温度下的厌氧代谢:水生昆虫中氧气限制假说的代谢组学检验。

Anaerobic metabolism at thermal extremes: a metabolomic test of the oxygen limitation hypothesis in an aquatic insect.

机构信息

*Department of Animal Ecology and Ecophysiology, Institute of Water and Wetland Research, Radboud University Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands; Marine Biology and Ecology Research Centre, University of Plymouth, Davy Building, Drake Circus, Plymouth PL4 8AA, UK; NERC Biomolecular Analysis Facility-Metabolomics Node (NBAF-B), School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.

出版信息

Integr Comp Biol. 2013 Oct;53(4):609-19. doi: 10.1093/icb/ict015. Epub 2013 Apr 19.

Abstract

Thermal limits in ectotherms may arise through a mismatch between supply and demand of oxygen. At higher temperatures, the ability of their cardiac and ventilatory activities to supply oxygen becomes insufficient to meet their elevated oxygen demand. Consequently, higher levels of oxygen in the environment are predicted to enhance tolerance of heat, whereas reductions in oxygen are expected to reduce thermal limits. Here, we extend previous research on thermal limits and oxygen limitation in aquatic insect larvae and directly test the hypothesis of increased anaerobic metabolism and lower energy status at thermal extremes. We quantified metabolite profiles in stonefly nymphs under varying temperatures and oxygen levels. Under normoxia, the concept of oxygen limitation applies to the insects studied. Shifts in the metabolome of heat-stressed stonefly nymphs clearly indicate the onset of anaerobic metabolism (e.g., accumulation of lactate, acetate, and alanine), a perturbation of the tricarboxylic acid cycle (e.g., accumulation of succinate and malate), and a decrease in energy status (e.g., ATP), with corresponding decreases in their ability to survive heat stress. These shifts were more pronounced under hypoxic conditions, and negated by hyperoxia, which also improved heat tolerance. Perturbations of metabolic pathways in response to either heat stress or hypoxia were found to be somewhat similar but not identical. Under hypoxia, energy status was greatly compromised at thermal extremes, but energy shortage and anaerobic metabolism could not be conclusively identified as the sole cause underlying thermal limits under hyperoxia. Metabolomics proved useful for suggesting a range of possible mechanisms to explore in future investigations, such as the involvement of leaking membranes or free radicals. In doing so, metabolomics provided a more complete picture of changes in metabolism under hypoxia and heat stress.

摘要

变温动物的热极限可能是由于氧气的供应和需求不匹配而产生的。在较高的温度下,它们的心脏和呼吸活动提供氧气的能力变得不足以满足其升高的氧气需求。因此,环境中较高水平的氧气预计会增强对热的耐受性,而氧气的减少预计会降低热极限。在这里,我们扩展了以前关于水生昆虫幼虫的热极限和氧气限制的研究,并直接测试了在热极端条件下增加无氧代谢和降低能量状态的假设。我们在不同温度和氧气水平下量化了石蝇若虫的代谢物谱。在正常氧条件下,氧气限制的概念适用于所研究的昆虫。受热胁迫的石蝇若虫代谢组的变化清楚地表明无氧代谢的开始(例如,乳酸、乙酸和丙氨酸的积累)、三羧酸循环的扰动(例如,琥珀酸和苹果酸的积累)和能量状态的下降(例如,ATP),以及它们对热应激的生存能力相应下降。在低氧条件下,这些变化更为明显,而高氧则否定了这些变化,并提高了耐热性。无论是热应激还是低氧,代谢途径的扰动都被发现有些相似但不完全相同。在低氧条件下,能量状态在热极限下大大受损,但在高氧下,能量短缺和无氧代谢不能被明确确定为热极限的唯一原因。代谢组学被证明是有用的,它可以提出一系列可能的机制来进行未来的研究,例如涉及膜渗漏或自由基的机制。这样,代谢组学提供了一个更完整的缺氧和热应激下代谢变化的画面。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7512/3776598/bf429b693240/ict015f1p.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验