Suppr超能文献

前馈网络中的中性稳定性、速率传播和临界分支。

Neutral stability, rate propagation, and critical branching in feedforward networks.

机构信息

Department of Applied Mathematics, University of Washington, Seattle, WA 98195, USA.

出版信息

Neural Comput. 2013 Jul;25(7):1768-806. doi: 10.1162/NECO_a_00461. Epub 2013 Apr 22.

Abstract

Recent experimental and computational evidence suggests that several dynamical properties may characterize the operating point of functioning neural networks: critical branching, neutral stability, and production of a wide range of firing patterns. We seek the simplest setting in which these properties emerge, clarifying their origin and relationship in random, feedforward networks of McCullochs-Pitts neurons. Two key parameters are the thresholds at which neurons fire spikes and the overall level of feedforward connectivity. When neurons have low thresholds, we show that there is always a connectivity for which the properties in question all occur, that is, these networks preserve overall firing rates from layer to layer and produce broad distributions of activity in each layer. This fails to occur, however, when neurons have high thresholds. A key tool in explaining this difference is the eigenstructure of the resulting mean-field Markov chain, as this reveals which activity modes will be preserved from layer to layer. We extend our analysis from purely excitatory networks to more complex models that include inhibition and local noise, and find that both of these features extend the parameter ranges over which networks produce the properties of interest.

摘要

最近的实验和计算证据表明,几种动态特性可能是功能神经网络工作点的特征:关键分支、中性稳定性和产生广泛的发射模式。我们寻求这些特性出现的最简单的环境,阐明它们在随机前馈 McCulloch-Pitts 神经元网络中的起源和关系。两个关键参数是神经元发射尖峰的阈值和前馈连接的整体水平。当神经元的阈值较低时,我们表明,对于所讨论的特性,总是存在一种连接,即这些网络保持了从一层到另一层的总发射率,并在每一层产生广泛的活动分布。然而,当神经元的阈值较高时,这种情况就不会发生。解释这种差异的关键工具是所得平均场马尔可夫链的本征结构,因为这揭示了哪些活动模式将从一层到另一层被保留。我们将我们的分析从纯兴奋性网络扩展到更复杂的模型,包括抑制和局部噪声,并发现这两个特征都扩展了网络产生感兴趣特性的参数范围。

相似文献

1
Neutral stability, rate propagation, and critical branching in feedforward networks.
Neural Comput. 2013 Jul;25(7):1768-806. doi: 10.1162/NECO_a_00461. Epub 2013 Apr 22.
2
How noise affects the synchronization properties of recurrent networks of inhibitory neurons.
Neural Comput. 2006 May;18(5):1066-110. doi: 10.1162/089976606776241048.
4
Rate and synchrony in feedforward networks of coincidence detectors: analytical solution.
Neural Comput. 2005 Apr;17(4):881-902. doi: 10.1162/0899766053429408.
5
Spike propagation in driven chain networks with dominant global inhibition.
Phys Rev E Stat Nonlin Soft Matter Phys. 2009 May;79(5 Pt 1):051917. doi: 10.1103/PhysRevE.79.051917. Epub 2009 May 20.
6
Information coding and oscillatory activity in synfire neural networks with and without inhibitory coupling.
Biol Cybern. 2004 Nov;91(5):283-94. doi: 10.1007/s00422-004-0499-x. Epub 2004 Sep 25.
7
Pulse propagation in discrete excitatory networks of integrate-and-fire neurons.
Phys Rev E Stat Nonlin Soft Matter Phys. 2004 Jul;70(1 Pt 1):011906. doi: 10.1103/PhysRevE.70.011906. Epub 2004 Jul 12.
8
Feedforward architectures driven by inhibitory interactions.
J Comput Neurosci. 2018 Feb;44(1):63-74. doi: 10.1007/s10827-017-0669-1. Epub 2017 Nov 14.
9
Bayesian spiking neurons I: inference.
Neural Comput. 2008 Jan;20(1):91-117. doi: 10.1162/neco.2008.20.1.91.
10
Cortical network modeling: analytical methods for firing rates and some properties of networks of LIF neurons.
J Physiol Paris. 2006 Jul-Sep;100(1-3):88-99. doi: 10.1016/j.jphysparis.2006.09.001. Epub 2006 Oct 24.

引用本文的文献

1
Signal denoising through topographic modularity of neural circuits.
Elife. 2023 Jan 26;12:e77009. doi: 10.7554/eLife.77009.
2
Oscillation-induced signal transmission and gating in neural circuits.
PLoS Comput Biol. 2014 Dec 11;10(12):e1003940. doi: 10.1371/journal.pcbi.1003940. eCollection 2014 Dec.
3
Intrinsic neuronal properties switch the mode of information transmission in networks.
PLoS Comput Biol. 2014 Dec 4;10(12):e1003962. doi: 10.1371/journal.pcbi.1003962. eCollection 2014 Dec.
4
Propagating synchrony in feed-forward networks.
Front Comput Neurosci. 2013 Nov 15;7:153. doi: 10.3389/fncom.2013.00153. eCollection 2013.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验