Suppr超能文献

与辅因子和核苷酸类似物结合的大肠杆菌胸苷酸合成酶的主链和内部环甲基共振归属

Backbone and ILV methyl resonance assignments of E. coli thymidylate synthase bound to cofactor and a nucleotide analogue.

作者信息

Sapienza Paul J, Lee Andrew L

机构信息

Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.

出版信息

Biomol NMR Assign. 2014 Apr;8(1):195-9. doi: 10.1007/s12104-013-9482-6. Epub 2013 May 9.

Abstract

Thymidylate synthase (TSase) is a 62 kDa homodimeric enzyme required for de novo synthesis of thymidine monophosphate in most organisms. This makes the enzyme an excellent target for anticancer and microbial antibiotic drugs. In addition, TSase has been shown to exhibit negative cooperativity and half-the-sites reactivity. For these collective reasons, TSase is widely studied, and much is known about its kinetics and structure as it progresses through a multi-step catalytic cycle. Recently, nuclear magnetic resonance spin relaxation has been instrumental in demonstrating the critical role of dynamics in enzyme function in small model systems. These studies raise questions about how dynamics affect function in larger enzymes with more complex reaction coordinates. TSase is an ideal candidate given its size, oligomeric state, cooperativity, and status as a drug target. Here, as a pre-requisite to spin relaxation studies, we present the backbone and ILV methyl resonance assignments of TSase from Escherichia coli bound to a substrate analogue and cofactor.

摘要

胸苷酸合成酶(TSase)是一种62 kDa的同二聚体酶,在大多数生物体中,它是从头合成胸苷一磷酸所必需的。这使得该酶成为抗癌和抗微生物抗生素药物的理想靶点。此外,已证明TSase表现出负协同性和半位点反应性。基于这些综合原因,TSase受到广泛研究,并且随着它经历多步催化循环,人们对其动力学和结构了解很多。最近,核磁共振自旋弛豫在证明动力学在小模型系统中酶功能中的关键作用方面发挥了重要作用。这些研究提出了关于动力学如何影响具有更复杂反应坐标的更大酶的功能的问题。鉴于TSase的大小、寡聚状态、协同性以及作为药物靶点的地位,它是一个理想的候选对象。在这里,作为自旋弛豫研究的先决条件,我们给出了来自大肠杆菌的与底物类似物和辅因子结合的TSase的主链和异亮氨酸、亮氨酸、缬氨酸甲基共振归属。

相似文献

1
Backbone and ILV methyl resonance assignments of E. coli thymidylate synthase bound to cofactor and a nucleotide analogue.
Biomol NMR Assign. 2014 Apr;8(1):195-9. doi: 10.1007/s12104-013-9482-6. Epub 2013 May 9.
2
Bacterial Thymidylate Synthase Binds Two Molecules of Substrate and Cofactor without Cooperativity.
J Am Chem Soc. 2015 Nov 18;137(45):14260-3. doi: 10.1021/jacs.5b10128. Epub 2015 Nov 9.
3
Widespread Perturbation of Function, Structure, and Dynamics by a Conservative Single-Atom Substitution in Thymidylate Synthase.
Biochemistry. 2016 Oct 11;55(40):5702-5713. doi: 10.1021/acs.biochem.6b00838. Epub 2016 Sep 30.
4
Backbone and ILVM methyl resonance assignments of human thymidylate synthase in apo and substrate bound forms.
Biomol NMR Assign. 2021 Apr;15(1):197-202. doi: 10.1007/s12104-021-10006-x. Epub 2021 Jan 24.
5
Mg2+ binds to the surface of thymidylate synthase and affects hydride transfer at the interior active site.
J Am Chem Soc. 2013 May 22;135(20):7583-92. doi: 10.1021/ja400761x. Epub 2013 May 10.
6
Bacterial versus human thymidylate synthase: Kinetics and functionality.
PLoS One. 2018 May 1;13(5):e0196506. doi: 10.1371/journal.pone.0196506. eCollection 2018.
7
Binding of the anticancer drug ZD1694 to E. coli thymidylate synthase: assessing specificity and affinity.
Structure. 1996 Nov 15;4(11):1317-24. doi: 10.1016/s0969-2126(96)00139-6.
9
Catalytic mechanism of Chlamydia trachomatis flavin-dependent thymidylate synthase.
J Biol Chem. 2005 Feb 18;280(7):5456-67. doi: 10.1074/jbc.M412415200. Epub 2004 Dec 8.

引用本文的文献

2
Visualizing an Allosteric Intermediate Using CuAAC Stabilization of an NMR Mixed Labeled Dimer.
ACS Chem Biol. 2021 Dec 17;16(12):2766-2775. doi: 10.1021/acschembio.1c00617. Epub 2021 Nov 16.
3
Positive Cooperativity in Substrate Binding by Human Thymidylate Synthase.
Biophys J. 2019 Sep 17;117(6):1074-1084. doi: 10.1016/j.bpj.2019.08.015. Epub 2019 Aug 22.
4
Inter-Active Site Communication Mediated by the Dimer Interface β-Sheet in the Half-the-Sites Enzyme, Thymidylate Synthase.
Biochemistry. 2019 Jul 30;58(30):3302-3313. doi: 10.1021/acs.biochem.9b00486. Epub 2019 Jul 18.
5
Widespread Perturbation of Function, Structure, and Dynamics by a Conservative Single-Atom Substitution in Thymidylate Synthase.
Biochemistry. 2016 Oct 11;55(40):5702-5713. doi: 10.1021/acs.biochem.6b00838. Epub 2016 Sep 30.
6
Chemical shift imprint of intersubunit communication in a symmetric homodimer.
Proc Natl Acad Sci U S A. 2016 Aug 23;113(34):9533-8. doi: 10.1073/pnas.1604748113. Epub 2016 Jul 27.
7
Bacterial Thymidylate Synthase Binds Two Molecules of Substrate and Cofactor without Cooperativity.
J Am Chem Soc. 2015 Nov 18;137(45):14260-3. doi: 10.1021/jacs.5b10128. Epub 2015 Nov 9.

本文引用的文献

1
TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts.
J Biomol NMR. 2009 Aug;44(4):213-23. doi: 10.1007/s10858-009-9333-z. Epub 2009 Jun 23.
2
The mechanism of rate-limiting motions in enzyme function.
Proc Natl Acad Sci U S A. 2007 Jul 17;104(29):11981-6. doi: 10.1073/pnas.0702551104. Epub 2007 Jul 5.
3
The dynamic energy landscape of dihydrofolate reductase catalysis.
Science. 2006 Sep 15;313(5793):1638-42. doi: 10.1126/science.1130258.
4
Intrinsic dynamics of an enzyme underlies catalysis.
Nature. 2005 Nov 3;438(7064):117-21. doi: 10.1038/nature04105.
5
Using NMRView to visualize and analyze the NMR spectra of macromolecules.
Methods Mol Biol. 2004;278:313-52. doi: 10.1385/1-59259-809-9:313.
6
STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins.
Nucleic Acids Res. 2004 Jul 1;32(Web Server issue):W500-2. doi: 10.1093/nar/gkh429.
7
9
High-level expression of Escherichia coli and Bacillus subtilis thymidylate synthases.
Protein Expr Purif. 2000 Jul;19(2):265-70. doi: 10.1006/prep.2000.1245.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验