Cardiovascular Research Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
J Am Heart Assoc. 2013 Apr 23;2(2):e000078. doi: 10.1161/JAHA.113.000078.
MicroRNAs (miRNAs) play a key role in the development of heart failure, and recent studies have shown that the muscle-specific miR-1 is a key regulator of cardiac hypertrophy. We tested the hypothesis that chronic restoration of miR-1 gene expression in vivo will regress hypertrophy and protect against adverse cardiac remodeling induced by pressure overload.
Cardiac hypertrophy was induced by left ventricular pressure overload in male Sprague-Dawley rats subjected to ascending aortic stenosis. When the hypertrophy was established at 2 weeks after surgery, the animals were randomized to receive either an adeno-associated virus expressing miR-1 (AAV9.miR-1) or green fluorescent protein (GFP) as control (AAV9.GFP) via a single-bolus tail-vein injection. Administration of miR-1 regressed cardiac hypertrophy (left ventricular posterior wall thickness,; 2.32±0.08 versus 2.75±0.07 mm, P<0.001) and (left ventricular septum wall thickness, 2.23±0.06 versus 2.54±0.10 mm, P<0.05) and halted the disease progression compared with control-treated animals, as assessed by echocardiography (fractional shortening, 37.60±5.01% versus 70.68±2.93%, P<0.05) and hemodynamic analyses (end-systolic pressure volume relationship/effective arterial elastance, 1.87±0.46 versus 0.96±0.38, P<0.05) after 7 weeks of treatment. Additionally, miR-1 replacement therapy lead to a marked reduction of myocardial fibrosis, an improvement in calcium handling, inhibition of apoptosis, and inactivation of the mitogen-activated protein kinase signaling pathways, suggesting a favorable effect on preventing the maladaptive ventricular remodeling. We also identified and validated a novel bona fide target of miR-1, Fibullin-2 (Fbln2), a secreted protein implicated in extracellular matrix remodeling.
Taken together, our findings suggest that restoration of miR-1 gene expression is a potential novel therapeutic strategy to reverse pressure-induced cardiac hypertrophy and prevent maladaptive cardiac remodeling.
微小 RNA(miRNA)在心力衰竭的发展中起着关键作用,最近的研究表明,肌肉特异性 miR-1 是心脏肥大的关键调节因子。我们检验了这样一个假设,即在体内慢性恢复 miR-1 基因表达将使肥厚消退,并防止压力超负荷引起的不良心脏重构。
雄性 Sprague-Dawley 大鼠通过升主动脉缩窄诱导左心室压力超负荷,诱导心肌肥厚。在手术后 2 周建立肥厚时,将动物随机分为接受腺相关病毒表达 miR-1(AAV9.miR-1)或绿色荧光蛋白(GFP)作为对照(AAV9.GFP)的两组,通过单次尾静脉注射给药。miR-1 的给药使心脏肥厚消退(左心室后壁厚度,;2.32±0.08 与 2.75±0.07 毫米,P<0.001)和(左心室间隔壁厚度,2.23±0.06 与 2.54±0.10 毫米,P<0.05),并通过超声心动图(分数缩短,37.60±5.01%与 70.68±2.93%,P<0.05)和血流动力学分析(收缩末期压力-容积关系/有效动脉弹性,1.87±0.46 与 0.96±0.38,P<0.05)评估与对照组相比,在 7 周的治疗后停止疾病进展。此外,miR-1 替代治疗导致心肌纤维化明显减少,钙处理改善,凋亡抑制,以及丝裂原激活蛋白激酶信号通路失活,表明对防止适应性心室重构有有利影响。我们还鉴定并验证了 miR-1 的一个新的、真正的靶标,纤维连接蛋白-2(Fbln2),一种参与细胞外基质重构的分泌蛋白。
总之,我们的研究结果表明,恢复 miR-1 基因表达可能是一种逆转压力诱导的心脏肥厚和防止适应性心脏重构的新的潜在治疗策略。