Suppr超能文献

通过分析内循环和有丝分裂细胞揭示了哺乳动物和果蝇中内复制的基本差异。

Fundamental differences in endoreplication in mammals and Drosophila revealed by analysis of endocycling and endomitotic cells.

机构信息

Whitehead Institute, Cambridge, MA 02142, USA.

出版信息

Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9368-73. doi: 10.1073/pnas.1304889110. Epub 2013 Apr 23.

Abstract

Throughout the plant and animal kingdoms specific cell types become polyploid, increasing their DNA content to attain a large cell size. In mammals, megakaryocytes (MKs) become polyploid before fragmenting into platelets. The mammalian trophoblast giant cells (TGCs) exploit their size to form a barrier between the maternal and embryonic tissues. The mechanism of polyploidization has been investigated extensively in Drosophila, in which a modified cell cycle--the endocycle, consisting solely of alternating S and gap phases--produces polyploid tissues. During S phase in the Drosophila endocycle, heterochromatin and specific euchromatic regions are underreplicated and reduced in copy number. Here we investigate the properties of polyploidization in murine MKs and TGCs. We induced differentiation of primary MKs and directly microdissected TGCs from embryonic day 9.5 implantation sites. The copy number across the genome was analyzed by array-based comparative genome hybridization. In striking contrast to Drosophila, the genome was uniformly and integrally duplicated in both MKs and TGCs. This was true even for heterochromatic regions analyzed by quantitative PCR. Underreplication of specific regions in polyploid cells is proposed to be due to a slower S phase, resulting from low expression of S-phase genes, causing failure to duplicate late replicating genomic intervals. We defined the transcriptome of TGCs and found robust expression of S-phase genes. Similarly, S-phase gene expression is not repressed in MKs, providing an explanation for the distinct endoreplication parameters compared with Drosophila. Consistent with TGCs endocycling rather than undergoing endomitosis, they have low expression of M-phase genes.

摘要

在植物和动物王国中,特定的细胞类型会变成多倍体,增加其 DNA 含量以获得较大的细胞大小。在哺乳动物中,巨核细胞 (MKs) 在分裂成血小板之前变成多倍体。哺乳动物滋养层巨细胞 (TGCs) 利用其大小在母体和胚胎组织之间形成屏障。多倍体形成的机制在果蝇中得到了广泛研究,在果蝇中,一种改良的细胞周期——仅由交替的 S 和间隙期组成的内周期——产生多倍体组织。在果蝇内周期的 S 期,异染色质和特定的常染色质区域复制不足,拷贝数减少。在这里,我们研究了小鼠 MKs 和 TGCs 中的多倍体形成特性。我们诱导原代 MKs 分化,并直接从小鼠胚胎 9.5 天植入部位分离 TGCs。通过基于阵列的比较基因组杂交分析基因组的拷贝数。与果蝇形成鲜明对比的是,MKs 和 TGCs 中的基因组都被均匀地和完整地复制。这甚至适用于通过定量 PCR 分析的异染色质区域。多倍体细胞中特定区域的复制不足被认为是由于 S 期较慢,这是由于 S 期基因表达水平低,导致晚期复制基因组间隔无法复制。我们定义了 TGCs 的转录组,发现 S 期基因表达旺盛。同样,MKs 中的 S 期基因表达没有被抑制,这为与果蝇相比,内复制参数明显不同提供了一个解释。与 TGCs 内周期而不是经历有丝分裂一致,它们的 M 期基因表达水平较低。

相似文献

4
Making big cells: one size does not fit all.制造大型细胞:一种尺寸并不适用于所有情况。
Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9621-2. doi: 10.1073/pnas.1306908110. Epub 2013 May 30.

引用本文的文献

1
Spatial ploidy inference using quantitative imaging.使用定量成像进行空间倍性推断
bioRxiv. 2025 Mar 17:2025.03.11.642217. doi: 10.1101/2025.03.11.642217.
5
Functional consequences of somatic polyploidy in development.体细胞多倍体在发育中的功能后果。
Development. 2024 Mar 1;151(5). doi: 10.1242/dev.202392. Epub 2024 Feb 28.

本文引用的文献

1
Canonical and atypical E2Fs regulate the mammalian endocycle.典型和非典型 E2Fs 调节哺乳动物的内圈。
Nat Cell Biol. 2012 Nov;14(11):1192-202. doi: 10.1038/ncb2595. Epub 2012 Oct 14.
2
Regulation of DNA replication during development.发育过程中 DNA 复制的调控。
Development. 2012 Feb;139(3):455-64. doi: 10.1242/dev.061838.
6
Decidual cell polyploidization necessitates mitochondrial activity.蜕膜细胞的多倍体化需要线粒体活动。
PLoS One. 2011;6(10):e26774. doi: 10.1371/journal.pone.0026774. Epub 2011 Oct 25.
9
Developmental control of the DNA replication and transcription programs.DNA 复制和转录程序的发育控制。
Genome Res. 2011 Feb;21(2):175-81. doi: 10.1101/gr.114611.110. Epub 2010 Dec 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验