Suppr超能文献
Abstract

OBJECTIVES

The aim of this study was to identify approaches to statistical harmonization which could be used in the context of summary data and/or individual participant data meta-analysis of cognitive measures and to apply and evaluate these different approaches to cognitive measures from three studies.

DATA SOURCES

MEDLINE, Embase, Web of Science and MathSciNet with a supplemental search using the Google search engine. The references of relevant articles were also checked and a search for more recent articles that cited the articles already identified as being of interest was undertaken.

REVIEW METHODS

A two-pronged approach was taken for this environmental scan. First, a search of studies that quantitatively combined data on cognition was conducted. The second component was to identify general literature on statistical methods for data harmonization. Standard environmental scan methods were used to conduct these reviews. The search results were rapidly screened to identify articles of relevance to this review. The references of relevant articles were checked and a search for more recent articles that cited the articles already identified as being of interest was undertaken.

RESULTS

Three general classes of statistical harmonization models were identified: (1) standardization methods (e.g., simple linear-, Z-transformations, T-scores, and C-scores); (2) latent variable models; and (3) multiple imputation models. Cross-sectional data from three studies including 9,269 participants were included in the applied analyses to examine the relationship between physical activity and cognition. A harmonization process was undertaken to determine the combinability of data across studies. The latent variable analysis underscored the difficulty harmonizing these cognition data. In general consistency was found among the statistical harmonization methods; however, there was some evidence that heterogeneity can be masked when specific standardization methods were used.

CONCLUSIONS

This study provides empirical evidence to inform methods of combining complex constructs using aggregate data (AD) or individual participant data meta-analysis. The results underscore that very careful consideration of inferential equivalence needs to be undertaken prior to combining cognition data across studies. Of the three methods of statistical harmonization for cognition data, T-score standardization is the least desirable compared with the centered score method or latent variable methods. Finally, assessment of the assumptions underlying statistical harmonization is not possible without some individual-level data which are required to assess the potential for bias in combining complex outcomes using AD meta-analysis.

摘要

相似文献

1
9
The future of Cochrane Neonatal.考克兰新生儿协作网的未来。
Early Hum Dev. 2020 Nov;150:105191. doi: 10.1016/j.earlhumdev.2020.105191. Epub 2020 Sep 12.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验