CEA, LIST, F-91191 Gif-sur-Yvette, France.
Phys Med Biol. 2013 May 21;58(10):3433-59. doi: 10.1088/0031-9155/58/10/3433. Epub 2013 Apr 26.
This work investigates the possibility of combining Monte Carlo (MC) simulations to a denoising algorithm for the accurate prediction of images acquired using amorphous silicon (a-Si) electronic portal imaging devices (EPIDs). An accurate MC model of the Siemens OptiVue1000 EPID was first developed using the penelope code, integrating a non-uniform backscatter modelling. Two already existing denoising algorithms were then applied on simulated portal images, namely the iterative reduction of noise (IRON) method and the locally adaptive Savitzky-Golay (LASG) method. A third denoising method, based on a nonparametric Bayesian framework and called DPGLM (for Dirichlet process generalized linear model) was also developed. Performances of the IRON, LASG and DPGLM methods, in terms of smoothing capabilities and computation time, were compared for portal images computed for different values of the RMS pixel noise (up to 10%) in three different configurations, a heterogeneous phantom irradiated by a non-conformal 15 × 15 cm(2) field, a conformal beam from a pelvis treatment plan, and an IMRT beam from a prostate treatment plan. For all configurations, DPGLM outperforms both IRON and LASG by providing better smoothing performances and demonstrating a better robustness with respect to noise. Additionally, no parameter tuning is required by DPGLM, which makes the denoising step very generic and easy to handle for any portal image. Concerning the computation time, the denoising of 1024 × 1024 images takes about 1 h 30 min, 2 h and 5 min using DPGLM, IRON, and LASG, respectively. This paper shows the feasibility to predict within a few hours and with the same resolution as real images accurate portal images, combining MC simulations with the DPGLM denoising algorithm.
这项工作研究了将蒙特卡罗(MC)模拟与去噪算法相结合,以准确预测使用非晶硅(a-Si)电子成像设备(EPID)获取的图像的可能性。首先,使用 penelope 代码开发了西门子 OptiVue1000 EPID 的精确 MC 模型,其中集成了非均匀背散射建模。然后,将两种现有的去噪算法应用于模拟的门图像,即迭代降噪(IRON)方法和局部自适应 Savitzky-Golay(LASG)方法。还开发了第三种去噪方法,基于非参数贝叶斯框架,称为 DPGLM(用于狄利克雷过程广义线性模型)。比较了 IRON、LASG 和 DPGLM 方法在不同 RMS 像素噪声(高达 10%)下的平滑能力和计算时间,在三种不同配置下计算了不同门图像的性能,一个不均匀的体模被非共形 15×15 cm(2)照射场照射,来自骨盆治疗计划的共形束和来自前列腺治疗计划的 IMRT 束。对于所有配置,DPGLM 都优于 IRON 和 LASG,提供了更好的平滑性能,并证明了对噪声的更好鲁棒性。此外,DPGLM 不需要参数调整,这使得去噪步骤非常通用,易于处理任何门图像。关于计算时间,使用 DPGLM、IRON 和 LASG 分别对 1024×1024 图像进行去噪需要约 1 小时 30 分钟、2 小时和 5 分钟。本文表明,结合 MC 模拟和 DPGLM 去噪算法,在几个小时内并以与真实图像相同的分辨率,预测准确的门图像是可行的。