School of Medicine, Univ. of California, San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA.
J Appl Physiol (1985). 2009 Nov;107(5):1559-68. doi: 10.1152/japplphysiol.00491.2009. Epub 2009 Sep 10.
Exercise presents a considerable stress to the pulmonary system and ventilation-perfusion (Va/Q) heterogeneity increases with exercise, affecting the efficiency of gas exchange. In particular, prolonged heavy exercise and maximal exercise are known to increase Va/Q heterogeneity and these changes persist into recovery. We hypothesized that the spatial heterogeneity of pulmonary perfusion would be similarly elevated after prolonged exercise. To test this, athletic subjects (n = 6, Vo(2max) = 61 ml. kg(-1).min(-1)) with exercising Va/Q heterogeneity previously characterized by the multiple inert gas elimination technique (MIGET), performed 45 min of cycle exercise at approximately 70% Vo(2max). MRI arterial spin labeling measures of pulmonary perfusion were acquired pre- and postexercise (at 20, 40, 60 min post) to quantify the spatial distribution in isogravitational (coronal) and gravitationally dependent (sagittal) planes. Regional proton density measurements allowed perfusion to be normalized for density and quantified in milliliters per minute per gram. Mean lung density did not change significantly in either plane after exercise (P = 0.19). Density-normalized perfusion increased in the sagittal plane postexercise (P =or <0.01) but heterogeneity did not (all P >or= 0.18), likely because of perfusion redistribution and vascular recruitment. Density-normalized perfusion was unchanged in the coronal plane postexercise (P = 0.66), however, perfusion heterogeneity was significantly increased as measured by the relative dispersion [RD, pre 0.62(0.07), post 0.82(0.21), P < 0.0001] and geometric standard deviation [GSD, pre 1.74(0.14), post 2.30(0.56), P < 0.005]. These changes in heterogeneity were related to the exercise-induced changes of the log standard deviation of the ventilation distribution, an MIGET index of Va/Q heterogeneity (RD R(2) = 0.68, P < 0.05, GSD, R(2) = 0.55, P = 0.09). These data are consistent with but not proof of interstitial pulmonary edema as the mechanism underlying exercise-induced increases in both spatial perfusion heterogeneity and Va/Q heterogeneity.
运动对肺部系统造成相当大的压力,随着运动,通气-灌注(Va/Q)异质性增加,影响气体交换的效率。特别是,长时间剧烈运动和最大运动已知会增加 Va/Q 异质性,这些变化在恢复过程中仍然存在。我们假设,在长时间运动后,肺灌注的空间异质性也会升高。为了验证这一点,具有先前通过多惰性气体消除技术(MIGET)表征的运动性 Va/Q 异质性的运动员(n = 6,Vo(2max)= 61ml.kg(-1)。min(-1)),以大约 70%Vo(2max)进行 45 分钟的自行车运动。在运动前(在 20、40、60 分钟后)和运动后采集 MRI 动脉自旋标记的肺灌注测量值,以量化等重力(冠状)和重力依赖(矢状)平面中的空间分布。区域质子密度测量允许根据密度对灌注进行归一化,并以毫升/分钟/克为单位进行量化。运动后,无论在哪个平面,肺密度均无明显变化(P = 0.19)。运动后矢状平面的密度归一化灌注增加(P = 或 <0.01),但异质性没有增加(所有 P ≥ 0.18),可能是由于灌注再分布和血管募集。运动后冠状平面的密度归一化灌注没有变化(P = 0.66),然而,相对弥散度[RD,前 0.62(0.07),后 0.82(0.21),P <0.0001]和几何标准差[GSD,前 1.74(0.14),后 2.30(0.56),P <0.005]表明异质性显著增加。这些异质性的变化与通气分布的对数标准差的运动诱导变化有关,这是 MIGET 测量的 Va/Q 异质性的指数(RD R(2)= 0.68,P <0.05,GSD,R(2)= 0.55,P = 0.09)。这些数据与运动引起的空间灌注异质性和 Va/Q 异质性增加的机制一致,但不能证明是间质性肺水肿。