Suppr超能文献

快速静脉输注 20 毫升/公斤生理盐水会改变健康仰卧人体的灌注分布。

Rapid intravenous infusion of 20 mL/kg saline alters the distribution of perfusion in healthy supine humans.

机构信息

Division of Physiology, Department of Medicine, University of California, San Diego, La Jolla, CA 92093-0623, United States.

出版信息

Respir Physiol Neurobiol. 2012 Mar 15;180(2-3):331-41. doi: 10.1016/j.resp.2011.12.013. Epub 2011 Dec 31.

Abstract

Rapid intravenous saline infusion, a model meant to replicate the initial changes leading to pulmonary interstitial edema, increases pulmonary arterial pressure in humans. We hypothesized that this would alter lung perfusion distribution. Six healthy subjects (29 ± 6 years) underwent magnetic resonance imaging to quantify perfusion using arterial spin labeling. Regional proton density was measured using a fast-gradient echo sequence, allowing blood delivered to the slice to be normalized for density and quantified in mL/min/g. Contributions from flow in large conduit vessels were minimized using a flow cutoff value (blood delivered > 35% maximum in mL/min/cm(3)) in order to obtain an estimate of blood delivered to the capillary bed (perfusion). Images were acquired supine at baseline, after infusion of 20 mL/kg saline, and after a short upright recovery period for a single sagittal slice in the right lung during breath-holds at functional residual capacity. Thoracic fluid content measured by impedance cardiography was elevated post-infusion by up to 13% (p<0.0001). Forced expiratory volume in 1s was reduced by 5.1% post-20 mL/kg (p=0.007). Infusion increased perfusion in nondependent lung by up to 16% (6.4 ± 1.6 mL/min/g baseline, 7.3 ± 1.8 post, 7.4 ± 1.7 recovery, p=0.03). Including conduit vessels, blood delivered in dependent lung was unchanged post-infusion; however, was increased at recovery (9.4 ± 2.7 mL/min/g baseline, 9.7 ± 2.0 post, 11.3 ± 2.2 recovery, p=0.01). After accounting for changes in conduit vessels, there were no significant changes in perfusion in dependent lung following infusion (7.8 ± 1.9 mL/min/g baseline, 7.9 ± 2.0 post, 8.5 ± 2.1 recovery, p=0.36). There were no significant changes in lung density. These data suggest that saline infusion increased perfusion to nondependent lung, consistent with an increase in intravascular pressures. Dependent lung may have been "protected" from increases in perfusion following infusion due to gravitational compression of the pulmonary vasculature.

摘要

快速静脉盐水输注,一种旨在复制导致肺间质水肿的初始变化的模型,会增加人体肺动脉压。我们假设这会改变肺灌注分布。六名健康受试者(29 ± 6 岁)接受磁共振成像,使用动脉自旋标记法量化灌注。使用快速梯度回波序列测量局部质子密度,允许对切片中输送的血液进行密度归一化,并以 mL/min/g 进行量化。使用血流截止值(mL/min/cm³ 中输送的血液> 35%最大)来最小化来自大导管血管的血流贡献,以便获得输送到毛细血管床的血液(灌注)的估计值。仰卧位采集图像,在输注 20 mL/kg 盐水后,以及在功能残气量下进行单次右肺矢状切片的短暂直立恢复期间进行呼吸暂停后采集图像。通过阻抗心动描记法测量的胸腔液含量在输注后升高多达 13%(p<0.0001)。20 mL/kg 后 1 秒用力呼气量减少 5.1%(p=0.007)。输注使非依赖肺的灌注增加多达 16%(基线时 6.4 ± 1.6 mL/min/g,输注后 7.3 ± 1.8,恢复时 7.4 ± 1.7,p=0.03)。包括导管血管在内,输注后依赖肺的血液输送没有变化;然而,在恢复时增加(基线时 9.4 ± 2.7 mL/min/g,输注后 9.7 ± 2.0,恢复时 11.3 ± 2.2,p=0.01)。在考虑导管血管变化后,输注后依赖肺的灌注没有明显变化(基线时 7.8 ± 1.9 mL/min/g,输注后 7.9 ± 2.0,恢复时 8.5 ± 2.1,p=0.36)。肺密度没有明显变化。这些数据表明,盐水输注增加了非依赖肺的灌注,这与血管内压的增加一致。由于肺血管的重力压缩,输注后依赖肺可能“免受”灌注增加的影响。

相似文献

1
Rapid intravenous infusion of 20 mL/kg saline alters the distribution of perfusion in healthy supine humans.
Respir Physiol Neurobiol. 2012 Mar 15;180(2-3):331-41. doi: 10.1016/j.resp.2011.12.013. Epub 2011 Dec 31.
2
The gravitational distribution of ventilation-perfusion ratio is more uniform in prone than supine posture in the normal human lung.
J Appl Physiol (1985). 2013 Aug 1;115(3):313-24. doi: 10.1152/japplphysiol.01531.2012. Epub 2013 Apr 25.
3
The effect of supine exercise on the distribution of regional pulmonary blood flow measured using proton MRI.
J Appl Physiol (1985). 2014 Feb 15;116(4):451-61. doi: 10.1152/japplphysiol.00659.2013. Epub 2013 Dec 19.
4
Pulmonary perfusion in the prone and supine postures in the normal human lung.
J Appl Physiol (1985). 2007 Sep;103(3):883-94. doi: 10.1152/japplphysiol.00292.2007. Epub 2007 Jun 14.
5
Hypoxic pulmonary vasoconstriction does not contribute to pulmonary blood flow heterogeneity in normoxia in normal supine humans.
J Appl Physiol (1985). 2009 Apr;106(4):1057-64. doi: 10.1152/japplphysiol.90759.2008. Epub 2008 Dec 4.
6
Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect.
J Appl Physiol (1985). 2007 Jul;103(1):240-8. doi: 10.1152/japplphysiol.01289.2006. Epub 2007 Mar 29.
7
Heavy upright exercise increases ventilation-perfusion mismatch in the basal lung: indirect evidence for interstitial pulmonary edema.
J Appl Physiol (1985). 2019 Aug 1;127(2):473-481. doi: 10.1152/japplphysiol.00056.2019. Epub 2019 Jun 27.
8
Lung volume does not alter the distribution of pulmonary perfusion in dependent lung in supine humans.
J Physiol. 2010 Dec 1;588(Pt 23):4759-68. doi: 10.1113/jphysiol.2010.196063. Epub 2010 Oct 4.
10
Demonstration of pulmonary perfusion heterogeneity induced by gravity and lung inflation using arterial spin labeling.
Eur J Radiol. 2010 Feb;73(2):249-54. doi: 10.1016/j.ejrad.2008.11.019. Epub 2009 Jan 3.

引用本文的文献

1
The spatial-temporal dynamics of pulmonary blood flow are altered in pulmonary arterial hypertension.
J Appl Physiol (1985). 2023 Apr 1;134(4):969-979. doi: 10.1152/japplphysiol.00463.2022. Epub 2023 Mar 2.
4
Characterizing Lung Disease in Cystic Fibrosis with Magnetic Resonance Imaging and Airway Physiology.
PLoS One. 2016 Jun 23;11(6):e0157177. doi: 10.1371/journal.pone.0157177. eCollection 2016.
5
Respiratory modulation of human autonomic function: long-term neuroplasticity in space.
J Physiol. 2016 Oct 1;594(19):5629-46. doi: 10.1113/JP271656. Epub 2016 Jul 26.
6
Molecular imaging of the pulmonary circulation in health and disease.
Clin Transl Imaging. 2014;2(5):415-426. doi: 10.1007/s40336-014-0076-9. Epub 2014 Sep 9.

本文引用的文献

1
Measuring lung water: ex vivo validation of multi-image gradient echo MRI.
J Magn Reson Imaging. 2011 Jul;34(1):220-4. doi: 10.1002/jmri.22600.
2
Lung volume does not alter the distribution of pulmonary perfusion in dependent lung in supine humans.
J Physiol. 2010 Dec 1;588(Pt 23):4759-68. doi: 10.1113/jphysiol.2010.196063. Epub 2010 Oct 4.
3
Rapid intravenous infusion of 20 ml/kg saline does not impair resting pulmonary gas exchange in the healthy human lung.
J Appl Physiol (1985). 2010 Jan;108(1):53-9. doi: 10.1152/japplphysiol.00787.2009. Epub 2009 Nov 12.
4
Pulmonary perfusion heterogeneity is increased by sustained, heavy exercise in humans.
J Appl Physiol (1985). 2009 Nov;107(5):1559-68. doi: 10.1152/japplphysiol.00491.2009. Epub 2009 Sep 10.
5
6
Characterizing pulmonary blood flow distribution measured using arterial spin labeling.
NMR Biomed. 2009 Dec;22(10):1025-35. doi: 10.1002/nbm.1407.
7
Hypoxic pulmonary vasoconstriction does not contribute to pulmonary blood flow heterogeneity in normoxia in normal supine humans.
J Appl Physiol (1985). 2009 Apr;106(4):1057-64. doi: 10.1152/japplphysiol.90759.2008. Epub 2008 Dec 4.
8
Pulmonary perfusion in the prone and supine postures in the normal human lung.
J Appl Physiol (1985). 2007 Sep;103(3):883-94. doi: 10.1152/japplphysiol.00292.2007. Epub 2007 Jun 14.
9
Vertical gradients in regional lung density and perfusion in the supine human lung: the Slinky effect.
J Appl Physiol (1985). 2007 Jul;103(1):240-8. doi: 10.1152/japplphysiol.01289.2006. Epub 2007 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验