Telethon Institute of Genetics and Medicine, Naples, Italy.
PLoS One. 2013 Apr 19;8(4):e61099. doi: 10.1371/journal.pone.0061099. Print 2013.
Loss of cell adhesion and enhancement of cell motility contribute to epithelial-to-mesenchymal transition during development. These processes are related to a) rearrangement of cell-cell and cell-substrate adhesion molecules; b) cross talk between extra-cellular matrix and internal cytoskeleton through focal adhesion molecules. Focal adhesions are stringently regulated transient structures implicated in cell adhesion, spreading and motility during tissue development. Importantly, despite the extensive elucidation of the molecular composition of focal adhesions, the complex regulation of their dynamics is largely unclear. Here, we demonstrate, using live-imaging in medaka, that the microRNA miR-204 promotes both mesenchymal neural crest and lens cell migration and elongation. Overexpression of miR-204 results in upregulated cell motility, while morpholino-mediated ablation of miR-204 activity causes abnormal lens morphogenesis and neural crest cell mislocalization. Using a variety of in vivo and in vitro approaches, we demonstrate that these actions are mediated by the direct targeting of the Ankrd13A gene, which in turn controls focal cell adhesion formation and distribution. Significantly, in vivo restoration of abnormally elevated levels of Ankrd13A resulting from miR-204 inactivation rescued the aberrant lens phenotype in medaka fish. These data uncover, for the first time in vivo, the role of a microRNA in developmental control of mesenchymal cell migration and highlight miR-204 as a "master regulator" of the molecular networks that regulate lens morphogenesis in vertebrates.
细胞黏附丧失和细胞迁移增强有助于发育过程中的上皮-间质转化。这些过程与 a) 细胞-细胞和细胞-基质黏附分子的重排;b) 细胞外基质和内部细胞骨架通过焦点黏附分子的串扰有关。焦点黏附物是严格调控的瞬时结构,参与组织发育过程中的细胞黏附、扩散和迁移。重要的是,尽管焦点黏附物的分子组成已经得到广泛阐明,但它们的动态的复杂调节在很大程度上仍不清楚。在这里,我们通过对斑马鱼的实时成像证明,miR-204 促进了间充质神经嵴和晶状体细胞的迁移和伸长。miR-204 的过表达导致细胞迁移率上调,而 miR-204 活性的 morpholino 介导消融导致晶状体形态发生异常和神经嵴细胞位置异常。通过各种体内和体外方法,我们证明这些作用是由 Ankrd13A 基因的直接靶向介导的,而 Ankrd13A 基因反过来又控制着焦点细胞黏附的形成和分布。重要的是,体内恢复因 miR-204 失活而异常升高的 Ankrd13A 水平,挽救了斑马鱼中异常的晶状体表型。这些数据首次在体内揭示了 microRNA 在间质细胞迁移的发育控制中的作用,并强调了 miR-204 作为调节脊椎动物晶状体形态发生的分子网络的“主调控因子”。