Department of Dermatology, University of Rochester, Rochester NY 14642, USA.
J Biomed Nanotechnol. 2013 Mar;9(3):382-92. doi: 10.1166/jbn.2013.1561.
Nanotechnology is a growing industry with wide ranging applications in consumer product and technology development. In the biomedical field, nanoparticles are finding increasing use as imaging agents for biomolecular labeling and tumor targeting. The nanoparticle physiochemical properties must be tailored for the specific application. For example, nanoparticle chemical and physical stability in the biological milieu (no oxidation, aggregation, agglomeration or toxicity) are often required. Nanoparticles used for biomolecular fluorescent imaging should also have high quantum yield (QY). The aim of this paper is to examine the QY, stability, and cell toxicity of a series of positive, negative and neutral surface charge quantum dot (QD) nanoparticles. Simple protocols are described to prepare water soluble QDs by modifying the surface with thiol containing antioxidant ligands and polymers keeping the QD core/shell composition constant. The ligands used to produce negatively charged QDs include glutathione (GSH), N-acetyl-L-cysteine (NAC), dihydrolipoic acid (DHLA), tiopronin (TP), bucilliamine (BUC), and mercaptosuccinic acid (MSA). Ligands used to produce positively charged QDs include cysteamine (CYS) and polyethylenimine (PEI). Dithiothreitol (DTT) was used to produce neutral charged QDs. Commercially available nonaqueous octadecylamine (ODA) capped QDs served as the starting material. Our results suggest that QD uptake and cytotoxicity are both dependent on surface ligand coating composition. The negative charged GSH coated QDs show superior performance exhibiting low cytotoxicity, high stability, high QY and therefore are best suited for bioimaging applications. PEI coated QD also show superior performance exhibiting high QY and stability. However, they are considerably more cytotoxic due to their high positive charge which is an advantageous property that can be exploited for gene transfection and/or tumor targeting applications. The synthetic procedures described are straightforward and can be easily adapted in most laboratory settings.
纳米技术是一个不断发展的行业,在消费品和技术开发领域有着广泛的应用。在生物医学领域,纳米粒子作为生物分子标记和肿瘤靶向的成像剂,其应用越来越多。纳米粒子的物理化学性质必须根据特定的应用进行调整。例如,通常需要纳米粒子在生物环境中的化学和物理稳定性(无氧化、聚集、团聚或毒性)。用于生物分子荧光成像的纳米粒子还应具有高量子产率(QY)。本文的目的是研究一系列正、负和中性表面电荷量子点(QD)纳米粒子的 QY、稳定性和细胞毒性。本文描述了通过用含硫醇的抗氧化配体和聚合物修饰表面来制备水溶性 QD 的简单方案,同时保持 QD 核/壳组成不变。用于制备带负电荷 QD 的配体包括谷胱甘肽(GSH)、N-乙酰-L-半胱氨酸(NAC)、二氢硫辛酸(DHLA)、硫普罗宁(TP)、丁酰硫脲(BUC)和巯基琥珀酸(MSA)。用于制备带正电荷 QD 的配体包括半胱氨酸(CYS)和聚乙烯亚胺(PEI)。使用二硫苏糖醇(DTT)制备带中性电荷的 QD。商用非水十八烷基胺(ODA)封端的 QD 用作起始材料。我们的结果表明,QD 的摄取和细胞毒性都取决于表面配体涂层的组成。带负电荷的 GSH 涂层 QD 表现出优异的性能,表现出低细胞毒性、高稳定性、高 QY,因此最适合生物成像应用。PEI 涂层 QD 也表现出优异的性能,表现出高 QY 和稳定性。然而,由于其高正电荷,它们的细胞毒性要大得多,这是一种有利的性质,可以用于基因转染和/或肿瘤靶向应用。所描述的合成程序简单易行,可在大多数实验室环境中轻松适应。