Suppr超能文献

炎症、自噬和肥胖:胰腺炎和胰腺癌发病机制中的共同特征。

Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer.

机构信息

Veterans Affairs Greater Los Angeles Healthcare System, California, USA.

出版信息

Gastroenterology. 2013 Jun;144(6):1199-209.e4. doi: 10.1053/j.gastro.2013.02.007.

Abstract

Inflammation and autophagy are cellular defense mechanisms. When these processes are deregulated (deficient or overactivated) they produce pathologic effects, such as oxidative stress, metabolic impairments, and cell death. Unresolved inflammation and disrupted regulation of autophagy are common features of pancreatitis and pancreatic cancer. Furthermore, obesity, a risk factor for pancreatitis and pancreatic cancer, promotes inflammation and inhibits or deregulates autophagy, creating an environment that facilitates the induction and progression of pancreatic diseases. However, little is known about how inflammation, autophagy, and obesity interact to promote exocrine pancreatic disorders. We review the roles of inflammation and autophagy, and their deregulation by obesity, in pancreatic diseases. We discuss the connections among disordered pathways and important areas for future research.

摘要

炎症和自噬是细胞防御机制。当这些过程失调(不足或过度激活)时,它们会产生病理效应,如氧化应激、代谢损伤和细胞死亡。未解决的炎症和自噬调节的破坏是胰腺炎和胰腺癌的共同特征。此外,肥胖是胰腺炎和胰腺癌的一个危险因素,它促进炎症并抑制或失调自噬,创造了一个有利于诱导和进展胰腺疾病的环境。然而,人们对炎症、自噬和肥胖如何相互作用以促进外分泌胰腺疾病知之甚少。我们综述了炎症和自噬的作用,以及肥胖对它们的失调在胰腺疾病中的作用。我们讨论了紊乱途径之间的联系以及未来研究的重要领域。

相似文献

1
Inflammation, autophagy, and obesity: common features in the pathogenesis of pancreatitis and pancreatic cancer.
Gastroenterology. 2013 Jun;144(6):1199-209.e4. doi: 10.1053/j.gastro.2013.02.007.
2
Autophagy, Inflammation, and Immune Dysfunction in the Pathogenesis of Pancreatitis.
Gastroenterology. 2017 Nov;153(5):1212-1226. doi: 10.1053/j.gastro.2017.08.071. Epub 2017 Sep 14.
3
Inflammation and pancreatic cancer: an evidence-based review.
Curr Opin Pharmacol. 2009 Aug;9(4):411-8. doi: 10.1016/j.coph.2009.06.011. Epub 2009 Jul 7.
5
Close relationship between mediators of inflammation and pancreatic cancer: Our experience.
World J Gastroenterol. 2024 Jun 21;30(23):2927-2930. doi: 10.3748/wjg.v30.i23.2927.
6
Involvement of inflammatory factors in pancreatic carcinogenesis and preventive effects of anti-inflammatory agents.
Semin Immunopathol. 2013 Mar;35(2):203-27. doi: 10.1007/s00281-012-0340-x. Epub 2012 Sep 7.
7
Relevance of animal models of pancreatic cancer and pancreatitis to human disease.
Gastroenterology. 2013 Jun;144(6):1194-8. doi: 10.1053/j.gastro.2013.01.070.
8
Obesity, autophagy and the pathogenesis of liver and pancreatic cancers.
J Gastroenterol Hepatol. 2012 Mar;27 Suppl 2(Suppl 2):10-4. doi: 10.1111/j.1440-1746.2011.07008.x.
10
Men1 maintains exocrine pancreas homeostasis in response to inflammation and oncogenic stress.
Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6622-6629. doi: 10.1073/pnas.1920017117. Epub 2020 Mar 10.

引用本文的文献

2
Unveiling CTRB2, RSPO3, KLOTB, and ROR1 as obesity-pancreatic disease association proteins: a comprehensive Mendelian randomization study.
Gastroenterol Rep (Oxf). 2025 Jul 31;13:goaf057. doi: 10.1093/gastro/goaf057. eCollection 2025.
4
Mechanisms underlying obesity-malignancy connection: a systematic narrative review.
J Physiol Biochem. 2025 May 23. doi: 10.1007/s13105-025-01084-9.
8
Potential causal association between gut microbiota, inflammatory cytokines, and acute pancreatitis: A Mendelian randomization study.
J Intensive Med. 2024 Dec 10;5(2):185-192. doi: 10.1016/j.jointm.2024.10.004. eCollection 2025 Apr.
9
The dual role of gut microbiota in pancreatic cancer: new insights into onset and treatment.
Ther Adv Med Oncol. 2025 Mar 15;17:17588359251324882. doi: 10.1177/17588359251324882. eCollection 2025.
10
Lipids, lipid-lowering drug target genes and pancreatic cancer: a Mendelian randomization study.
Int J Clin Pharm. 2025 Jun;47(3):747-754. doi: 10.1007/s11096-025-01866-7. Epub 2025 Jan 17.

本文引用的文献

1
Nuclear factor-κB in pancreatitis: Jack-of-all-trades, but which one is more important?
Gastroenterology. 2013 Jan;144(1):26-9. doi: 10.1053/j.gastro.2012.11.016. Epub 2012 Nov 16.
2
Deletion of IκBα activates RelA to reduce acute pancreatitis in mice through up-regulation of Spi2A.
Gastroenterology. 2013 Jan;144(1):192-201. doi: 10.1053/j.gastro.2012.09.058. Epub 2012 Oct 3.
3
Activation of nuclear factor-κB in acinar cells increases the severity of pancreatitis in mice.
Gastroenterology. 2013 Jan;144(1):202-10. doi: 10.1053/j.gastro.2012.09.059. Epub 2012 Oct 3.
4
NFATc3 regulates trypsinogen activation, neutrophil recruitment, and tissue damage in acute pancreatitis in mice.
Gastroenterology. 2012 Nov;143(5):1352-1360.e7. doi: 10.1053/j.gastro.2012.07.098. Epub 2012 Jul 27.
6
Sterile inflammatory response in acute pancreatitis.
Pancreas. 2012 Apr;41(3):353-7. doi: 10.1097/MPA.0b013e3182321500.
7
Inflammasomes in health and disease.
Nature. 2012 Jan 18;481(7381):278-86. doi: 10.1038/nature10759.
8
CCL2-induced migration and SOCS3-mediated activation of macrophages are involved in cerulein-induced pancreatitis in mice.
Gastroenterology. 2012 Apr;142(4):1010-1020.e9. doi: 10.1053/j.gastro.2011.12.054. Epub 2012 Jan 13.
9
10
Oncogenic transcription factors: cornerstones of inflammation-linked pancreatic carcinogenesis.
Gut. 2013 Feb;62(2):310-6. doi: 10.1136/gutjnl-2011-301008. Epub 2011 Oct 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验