Suppr超能文献

一种在 7 特斯拉超高分辨率皮质分割的计算框架。

A computational framework for ultra-high resolution cortical segmentation at 7Tesla.

机构信息

Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.

Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.

出版信息

Neuroimage. 2014 Jun;93 Pt 2:201-9. doi: 10.1016/j.neuroimage.2013.03.077. Epub 2013 Apr 25.

Abstract

This paper presents a computational framework for whole brain segmentation of 7Tesla magnetic resonance images able to handle ultra-high resolution data. The approach combines multi-object topology-preserving deformable models with shape and intensity atlases to encode prior anatomical knowledge in a computationally efficient algorithm. Experimental validation on simulated and real brain images shows accuracy and robustness of the method and demonstrates the benefits of an increased processing resolution.

摘要

本文提出了一种适用于 7T 磁共振图像全脑分割的计算框架,能够处理超高分辨率数据。该方法将多目标拓扑保持变形模型与形状和强度图谱相结合,以便在计算效率高的算法中对先验解剖知识进行编码。对模拟和真实脑图像的实验验证表明了该方法的准确性和鲁棒性,并证明了提高处理分辨率的好处。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验