Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
Neuroimage. 2014 Jun;93 Pt 2:201-9. doi: 10.1016/j.neuroimage.2013.03.077. Epub 2013 Apr 25.
This paper presents a computational framework for whole brain segmentation of 7Tesla magnetic resonance images able to handle ultra-high resolution data. The approach combines multi-object topology-preserving deformable models with shape and intensity atlases to encode prior anatomical knowledge in a computationally efficient algorithm. Experimental validation on simulated and real brain images shows accuracy and robustness of the method and demonstrates the benefits of an increased processing resolution.
本文提出了一种适用于 7T 磁共振图像全脑分割的计算框架,能够处理超高分辨率数据。该方法将多目标拓扑保持变形模型与形状和强度图谱相结合,以便在计算效率高的算法中对先验解剖知识进行编码。对模拟和真实脑图像的实验验证表明了该方法的准确性和鲁棒性,并证明了提高处理分辨率的好处。