Suppr超能文献

预测佛罗里达地表水系统中沙门氏菌种群数量的生物、化学和物理指标。

Predicting Salmonella populations from biological, chemical, and physical indicators in Florida surface waters.

机构信息

Department of Food Science and Human Nutrition, Citrus Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL, USA.

出版信息

Appl Environ Microbiol. 2013 Jul;79(13):4094-105. doi: 10.1128/AEM.00777-13. Epub 2013 Apr 26.

Abstract

Coliforms, Escherichia coli, and various physicochemical water characteristics have been suggested as indicators of microbial water quality or index organisms for pathogen populations. The relationship between the presence and/or concentration of Salmonella and biological, physical, or chemical indicators in Central Florida surface water samples over 12 consecutive months was explored. Samples were taken monthly for 12 months from 18 locations throughout Central Florida (n = 202). Air and water temperature, pH, oxidation-reduction potential (ORP), turbidity, and conductivity were measured. Weather data were obtained from nearby weather stations. Aerobic plate counts and most probable numbers (MPN) for Salmonella, E. coli, and coliforms were performed. Weak linear relationships existed between biological indicators (E. coli/coliforms) and Salmonella levels (R(2) < 0.1) and between physicochemical indicators and Salmonella levels (R(2) < 0.1). The average rainfall (previous day, week, and month) before sampling did not correlate well with bacterial levels. Logistic regression analysis showed that E. coli concentration can predict the probability of enumerating selected Salmonella levels. The lack of good correlations between biological indicators and Salmonella levels and between physicochemical indicators and Salmonella levels shows that the relationship between pathogens and indicators is complex. However, Escherichia coli provides a reasonable way to predict Salmonella levels in Central Florida surface water through logistic regression.

摘要

大肠菌群、大肠杆菌和各种物理化学水质特性被认为是微生物水质的指标或病原体种群的指示生物。本研究探讨了佛罗里达州中部地表水样本中沙门氏菌的存在和/或浓度与 12 个月内的生物、物理或化学指标之间的关系。在 12 个月内,从佛罗里达州中部的 18 个地点每月采集一次样本(n = 202)。测量空气和水的温度、pH 值、氧化还原电位(ORP)、浊度和电导率。从附近的气象站获取天气数据。对沙门氏菌、大肠杆菌和大肠菌群进行需氧平板计数和最可能数(MPN)检测。生物指标(大肠杆菌/大肠菌群)与沙门氏菌水平之间存在微弱的线性关系(R²<0.1),理化指标与沙门氏菌水平之间也存在微弱的线性关系(R²<0.1)。采样前前一天、前一周和前一个月的平均降雨量与细菌水平相关性不大。逻辑回归分析表明,大肠杆菌浓度可以预测沙门氏菌特定水平的检出概率。生物指标与沙门氏菌水平之间以及理化指标与沙门氏菌水平之间的相关性较差表明,病原体与指示物之间的关系很复杂。然而,通过逻辑回归,大肠杆菌为预测佛罗里达州中部地表水的沙门氏菌水平提供了一种合理的方法。

相似文献

1
Predicting Salmonella populations from biological, chemical, and physical indicators in Florida surface waters.
Appl Environ Microbiol. 2013 Jul;79(13):4094-105. doi: 10.1128/AEM.00777-13. Epub 2013 Apr 26.
2
Microbial quality of agricultural water in Central Florida.
PLoS One. 2017 Apr 11;12(4):e0174889. doi: 10.1371/journal.pone.0174889. eCollection 2017.
3
Microbial Survey of Pennsylvania Surface Water Used for Irrigating Produce Crops.
J Food Prot. 2016 Jun;79(6):902-12. doi: 10.4315/0362-028X.JFP-15-479.
4
A preliminary evaluation of microbial water quality in the irrigation pond.
Water Environ Res. 2022 Jul;94(7):e10757. doi: 10.1002/wer.10757.
6
Comparing temperature effects on Escherichia coli, Salmonella, and Enterococcus survival in surface waters.
Lett Appl Microbiol. 2014 Sep;59(3):278-83. doi: 10.1111/lam.12272. Epub 2014 May 5.
9
Antimicrobial-resistant patterns of Escherichia coli and Salmonella strains in the aquatic Lebanese environments.
Environ Pollut. 2006 Sep;143(2):269-77. doi: 10.1016/j.envpol.2005.11.027. Epub 2006 Jan 18.

引用本文的文献

1
Recent developments in waterborne pathogen detection technologies.
Environ Monit Assess. 2025 Feb 4;197(3):233. doi: 10.1007/s10661-025-13644-z.
3
Prevalence of STEC virulence markers and as a function of abiotic factors in agricultural water in the southeastern United States.
Front Microbiol. 2024 May 20;15:1320168. doi: 10.3389/fmicb.2024.1320168. eCollection 2024.
4
Methodological differences between studies confound one-size-fits-all approaches to managing surface waterways for food and water safety.
Appl Environ Microbiol. 2024 Feb 21;90(2):e0183523. doi: 10.1128/aem.01835-23. Epub 2024 Jan 12.
10
Prediction of Concentrations in Agricultural Pond Waters: Application and Comparison of Machine Learning Algorithms.
Front Artif Intell. 2022 Jan 11;4:768650. doi: 10.3389/frai.2021.768650. eCollection 2021.

本文引用的文献

1
Predictive models for Escherichia coli concentrations at inland lake beaches and relationship of model variables to pathogen detection.
Appl Environ Microbiol. 2013 Mar;79(5):1676-88. doi: 10.1128/AEM.02995-12. Epub 2013 Jan 4.
2
Salmonella serotype diversity and seasonality in urban and rural streams.
J Appl Microbiol. 2013 Mar;114(3):907-22. doi: 10.1111/jam.12079. Epub 2013 Jan 14.
3
Landscape and meteorological factors affecting prevalence of three food-borne pathogens in fruit and vegetable farms.
Appl Environ Microbiol. 2013 Jan;79(2):588-600. doi: 10.1128/AEM.02491-12. Epub 2012 Nov 9.
4
Detection of Salmonella spp. from large volumes of water by modified Moore swabs and tangential flow filtration.
Lett Appl Microbiol. 2013 Feb;56(2):88-94. doi: 10.1111/lam.12016. Epub 2012 Dec 3.
5
7
Microbial quality of tropical inland waters and effects of rainfall events.
Appl Environ Microbiol. 2012 Aug;78(15):5160-9. doi: 10.1128/AEM.07773-11. Epub 2012 May 18.
8
Distribution and Genetic Diversity of Salmonella enterica in the Upper Suwannee River.
Int J Microbiol. 2011;2011:461321. doi: 10.1155/2011/461321. Epub 2011 Dec 13.
10
Escherichia coli in the Environment: Implications for Water Quality and Human Health.
Microbes Environ. 2008;23(2):101-8. doi: 10.1264/jsme2.23.101.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验