Suppr超能文献

挪威创伤生存预测模型:解剖损伤、急性生理学、年龄及合并症的建模效应

Norwegian survival prediction model in trauma: modelling effects of anatomic injury, acute physiology, age, and co-morbidity.

作者信息

Jones J M, Skaga N O, Søvik S, Lossius H M, Eken T

机构信息

Mathematics Department, Keele University, Keele, Staffordshire, United Kingdom.

出版信息

Acta Anaesthesiol Scand. 2014 Mar;58(3):303-15. doi: 10.1111/aas.12256. Epub 2014 Jan 20.

Abstract

INTRODUCTION

Anatomic injury, physiological derangement, age, and injury mechanism are well-founded predictors of trauma outcome. We aimed to develop and validate the first Scandinavian survival prediction model for trauma.

METHODS

Eligible were patients admitted to Oslo University Hospital Ullevål within 24 h after injury with Injury Severity Score ≥ 10, proximal penetrating injuries or received by a trauma team. The derivation dataset comprised 5363 patients (August 2000 to July 2006); the validation dataset comprised 2517 patients (August 2006 to July 2008). Exclusion because of missing data was < 1%. Outcome was 30-day mortality. Logistic regression analysis incorporated fractional polynomial modelling and interaction effects. Model validation included a calibration plot, Hosmer-Lemeshow test and receiver operating characteristic (ROC) curves.

RESULTS

The new survival prediction model included the anatomic New Injury Severity Score (NISS), Triage Revised Trauma Score (T-RTS, comprising Glascow Coma Scale score, respiratory rate, and systolic blood pressure), age, pre-injury co-morbidity scored according to the American Society of Anesthesiologists Physical Status Classification System (ASA-PS), and an interaction term. Fractional polynomial analysis supported treating NISS and T-RTS as linear functions and age as cubic. Model discrimination between survivors and non-survivors was excellent. Area (95% confidence interval) under the ROC curve was 0.966 (0.959-0.972) in the derivation and 0.946 (0.930-0.962) in the validation dataset. Overall, low mortality and skewed survival probability distribution invalidated model calibration using the Hosmer-Lemeshow test.

CONCLUSIONS

The Norwegian survival prediction model in trauma (NORMIT) is a promising alternative to existing prediction models. External validation of the model in other trauma populations is warranted.

摘要

引言

解剖损伤、生理紊乱、年龄和损伤机制是创伤预后的可靠预测指标。我们旨在开发并验证首个斯堪的纳维亚创伤生存预测模型。

方法

纳入标准为伤后24小时内入住奥斯陆大学医院乌勒瓦尔分院、损伤严重度评分≥10分、近端穿透伤或由创伤团队接诊的患者。推导数据集包含5363例患者(2000年8月至2006年7月);验证数据集包含2517例患者(2006年8月至2008年7月)。因数据缺失而排除的患者<1%。结局指标为30天死亡率。逻辑回归分析采用分数多项式建模和交互效应。模型验证包括校准图、Hosmer-Lemeshow检验和受试者工作特征(ROC)曲线。

结果

新的生存预测模型纳入了解剖学新损伤严重度评分(NISS)、分诊修正创伤评分(T-RTS,包括格拉斯哥昏迷量表评分、呼吸频率和收缩压)、年龄、根据美国麻醉医师协会身体状况分类系统(ASA-PS)评分的伤前合并症以及一个交互项。分数多项式分析支持将NISS和T-RTS视为线性函数,将年龄视为三次函数。模型对幸存者和非幸存者的区分能力极佳。推导数据集中ROC曲线下面积(95%置信区间)为0.966(0.959 - 0.972),验证数据集中为0.946(0.930 - 0.962)。总体而言,低死亡率和生存概率分布偏态使Hosmer-Lemeshow检验用于模型校准无效。

结论

挪威创伤生存预测模型(NORMIT)是现有预测模型的一个有前景的替代方案。有必要在其他创伤人群中对该模型进行外部验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6956/4276290/6665eed42aff/aas0058-0303-f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验