Suppr超能文献

α-微管蛋白在水稻和拟南芥中受到高渗胁迫时迅速发生磷酸化。

α-tubulin is rapidly phosphorylated in response to hyperosmotic stress in rice and Arabidopsis.

机构信息

Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8601, Japan.

出版信息

Plant Cell Physiol. 2013 Jun;54(6):848-58. doi: 10.1093/pcp/pct065. Epub 2013 Apr 28.

Abstract

By using high-resolution two-dimensional PAGE followed by phosphoprotein-specific staining and peptide mass fingerprint analysis along with other assays, we found that α-tubulin is phosphorylated in response to hyperosmotic stress in rice and Arabidopsis. The onset of the phosphorylation response was as early as 2 min after hyperosmotic stress treatment, and a major proportion of α-tubulin was phosphorylated after 60 min in root tissues. However, the phosphorylated form of α-tubulin was readily dephosphorylated upon stress removal. The phosphorylation site was identified as Thr349 by comprehensive mutagenesis of serine/threonine residues in a rice α-tubulin isoform followed by evaluation in cultured cell protoplasts. This residue is located at the surface for the interaction with β-tubulin in polymerized α-β tubulin dimers and has been proposed to be directly involved in this interaction. Thus, α-tubulin phosphorylation was considered to occur on free tubulin dimers in response to hyperosmotic stress. The incorporation of green fluorescent protein (GFP)-α-tubulin into cortical microtubules was completely inhibited in transgenic Arabidopsis when Thr349 was substituted with glutamate or aspartate. Using transgenic Arabidopsis plants expressing GFP-α-tubulin, we found that hyperosmotic stress causes extensive cortical microtubule depolymerization. Microtubule-destabilizing treatments such as propyzamide or oryzalin and temperature stresses resulted in α-tubulin phosphorylation, whereas hyperosmotic stress-induced α-tubulin phosphorylation was partially inhibited by taxol, which stabilizes microtubules. These results and the three-dimensional location of the phosphorylation site suggested that microtubules are depolymerized in response to hyperosmotic stress via α-tubulin phosphorylation. Together, the results of the present study reveal a novel mechanism that globally regulates the microtubule polymerization.

摘要

通过使用高分辨率二维 PAGE 结合磷酸化蛋白特异性染色和肽质量指纹图谱分析以及其他检测方法,我们发现水稻和拟南芥中的α-微管蛋白在受到高渗胁迫时会发生磷酸化。磷酸化反应的起始时间早在高渗胁迫处理后 2 分钟,而在根组织中 60 分钟后,大部分α-微管蛋白发生磷酸化。然而,当应激去除时,磷酸化的α-微管蛋白很容易去磷酸化。通过对水稻α-微管蛋白同工型中丝氨酸/苏氨酸残基的综合突变分析,并在培养的细胞原生质体中进行评估,确定了磷酸化位点为 Thr349。该残基位于聚合的α-β微管蛋白二聚体中与β-微管蛋白相互作用的表面,并且被提议直接参与这种相互作用。因此,α-微管蛋白磷酸化被认为是在高渗胁迫下发生在游离的微管蛋白二聚体上。当 Thr349 被谷氨酸或天冬氨酸取代时,绿色荧光蛋白(GFP)-α-微管蛋白整合到皮层微管中的情况在转基因拟南芥中完全受到抑制。使用表达 GFP-α-微管蛋白的转基因拟南芥植物,我们发现高渗胁迫会导致广泛的皮层微管解聚。微管去稳定处理,如丙嗪酰胺或稻瘟灵和温度应激导致α-微管蛋白磷酸化,而紫杉醇部分抑制高渗胁迫诱导的α-微管蛋白磷酸化,紫杉醇稳定微管。这些结果和磷酸化位点的三维位置表明,微管通过α-微管蛋白磷酸化来响应高渗胁迫而解聚。总之,本研究的结果揭示了一种全局调节微管聚合的新机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验