Hotta Takashi, Fujita Satoshi, Uchimura Seiichi, Noguchi Masahiro, Demura Taku, Muto Etsuko, Hashimoto Takashi
Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.Ho., S.F., M.N., T.D., T.Ha.); andLaboratory of Molecular Biophysics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan (S.U., E.M.).
Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan (T.Ho., S.F., M.N., T.D., T.Ha.); andLaboratory of Molecular Biophysics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan (S.U., E.M.)
Plant Physiol. 2016 Mar;170(3):1189-205. doi: 10.1104/pp.15.01173. Epub 2016 Jan 8.
Microtubules assemble into several distinct arrays that play important roles in cell division and cell morphogenesis. To decipher the mechanisms that regulate the dynamics and organization of this versatile cytoskeletal component, it is essential to establish in vitro assays that use functional tubulin. Although plant tubulin has been purified previously from protoplasts by reversible taxol-induced polymerization, a simple and efficient purification method has yet to be developed. Here, we used a Tumor Overexpressed Gene (TOG) column, in which the tubulin-binding domains of a yeast (Saccharomyces cerevisiae) TOG homolog are immobilized on resin, to isolate functional plant tubulin. We found that several hundred micrograms of pure tubulin can readily be purified from cell suspension cultures of tobacco (Nicotiana tabacum) and Arabidopsis (Arabidopsis thaliana). The tubulin purified by the TOG column showed high assembly competence, partly because of low levels of polymerization-inhibitory phosphorylation of α-tubulin. Compared with porcine brain tubulin, Arabidopsis tubulin is highly dynamic in vitro at both the plus and minus ends, exhibiting faster shrinkage rates and more frequent catastrophe events, and exhibits frequent spontaneous nucleation. Furthermore, our study shows that an internal histidine tag in α-tubulin can be used to prepare particular isotypes and specifically engineered versions of α-tubulin. In contrast to previous studies of plant tubulin, our mass spectrometry and immunoblot analyses failed to detect posttranslational modification of the isolated Arabidopsis tubulin or detected only low levels of posttranslational modification. This novel technology can be used to prepare assembly-competent, highly dynamic pure tubulin from plant cell cultures.
微管组装成几种不同的阵列,在细胞分裂和细胞形态发生中发挥重要作用。为了解析调节这种多功能细胞骨架成分动态和组织的机制,建立使用功能性微管蛋白的体外分析方法至关重要。尽管此前已通过可逆的紫杉醇诱导聚合从原生质体中纯化出植物微管蛋白,但尚未开发出一种简单有效的纯化方法。在这里,我们使用了一种肿瘤过表达基因(TOG)柱,其中酵母(酿酒酵母)TOG同源物的微管蛋白结合结构域固定在树脂上,以分离功能性植物微管蛋白。我们发现,从烟草(烟草)和拟南芥(拟南芥)的细胞悬浮培养物中可以很容易地纯化出几百微克的纯微管蛋白。通过TOG柱纯化的微管蛋白显示出高组装能力,部分原因是α-微管蛋白的聚合抑制磷酸化水平较低。与猪脑微管蛋白相比,拟南芥微管蛋白在体外正负两端都具有高度动态性,表现出更快的收缩速率和更频繁的灾难事件,并且表现出频繁的自发成核。此外,我们的研究表明,α-微管蛋白中的内部组氨酸标签可用于制备特定的亚型和经过特殊工程改造的α-微管蛋白版本。与之前对植物微管蛋白的研究不同,我们的质谱和免疫印迹分析未能检测到分离的拟南芥微管蛋白的翻译后修饰,或仅检测到低水平的翻译后修饰。这项新技术可用于从植物细胞培养物中制备具有组装能力、高度动态的纯微管蛋白。