Department of Bioengineering, Instituto Superior Técnico, Technical University of Lisbon, Lisbon, Portugal.
Antimicrob Agents Chemother. 2013 Jul;57(7):3159-67. doi: 10.1128/AAC.00811-12. Epub 2013 Apr 29.
The widespread emergence of antifungal drug resistance poses a severe clinical problem. Though predicted to play a role in this phenomenon, the drug:H(+) antiporters (DHA) of the major facilitator superfamily have largely escaped characterization in pathogenic yeasts. This work describes the first DHA from the pathogenic yeast Candida glabrata reported to be involved in antifungal drug resistance, the C. glabrata QDR2 (CgQDR2) gene (ORF CAGL0G08624g). The expression of CgQDR2 in C. glabrata was found to confer resistance to the antifungal drugs miconazole, tioconazole, clotrimazole, and ketoconazole. By use of a green fluorescent protein (GFP) fusion, the CgQdr2 protein was found to be targeted to the plasma membrane in C. glabrata. In agreement with these observations, CgQDR2 expression was found to decrease the intracellular accumulation of radiolabeled clotrimazole in C. glabrata and to play a role in the extrusion of this antifungal from preloaded cells. Interestingly, the functional heterologous expression of CgQDR2 in the model yeast Saccharomyces cerevisiae further confirmed the role of this gene as a multidrug resistance determinant: its expression was able to complement the susceptibility phenotype exhibited by its S. cerevisiae homologue, QDR2, in the presence of imidazoles and of the antimalarial and antiarrhythmic drug quinidine. In contrast to the findings reported for Qdr2, CgQdr2 expression does not contribute to the ability of yeast to grow under K(+)-limiting conditions. Interestingly, CgQDR2 transcript levels were seen to be upregulated in C. glabrata cells challenged with clotrimazole or quinidine. This upregulation was found to depend directly on the transcription factor CgPdr1, the major regulator of multidrug resistance in this pathogenic yeast, which has also been found to be a determinant of quinidine and clotrimazole resistance in C. glabrata.
抗真菌药物耐药性的广泛出现构成了严重的临床问题。尽管预测在这种现象中起作用,但主要易化子超家族的药物:H(+)转运蛋白(DHA)在致病性酵母中在很大程度上仍未得到描述。这项工作描述了第一个参与抗真菌药物耐药性的致病性酵母 Candida glabrata 的 DHA,即 Candida glabrata QDR2(CgQDR2)基因(ORF CAGL0G08624g)。发现 C. glabrata 中 CgQDR2 的表达赋予了对咪康唑、噻康唑、克霉唑和酮康唑等抗真菌药物的耐药性。通过使用绿色荧光蛋白(GFP)融合,发现 CgQdr2 蛋白在 C. glabrata 中靶向质膜。与这些观察结果一致,发现 CgQDR2 表达降低了放射性标记的克霉唑在 C. glabrata 中的细胞内积累,并在将这种抗真菌剂从预加载的细胞中排出方面发挥作用。有趣的是,CgQDR2 的功能异源表达在模型酵母 Saccharomyces cerevisiae 中进一步证实了该基因作为多药耐药决定因素的作用:其表达能够在唑类药物和抗疟药奎宁以及抗心律失常药奎尼丁存在的情况下,互补其 S. cerevisiae 同源物 QDR2 的敏感性表型。与报告的 Qdr2 发现相反,CgQdr2 表达不会影响酵母在低钾条件下生长的能力。有趣的是,在 challenged 用克霉唑或奎宁的 C. glabrata 细胞中观察到 CgQDR2 转录本水平上调。这种上调被发现直接依赖于转录因子 CgPdr1,这是这种致病性酵母中多药耐药的主要调节剂,也被发现是 C. glabrata 中奎宁和克霉唑耐药的决定因素。