Suppr超能文献

由不同的 16S 核糖体模糊突变引起的亚基间桥的重排模拟了 EF-Tu 结合状态。

Reorganization of an intersubunit bridge induced by disparate 16S ribosomal ambiguity mutations mimics an EF-Tu-bound state.

机构信息

Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.

出版信息

Proc Natl Acad Sci U S A. 2013 Jun 11;110(24):9716-21. doi: 10.1073/pnas.1301585110. Epub 2013 Apr 29.

Abstract

After four decades of research aimed at understanding tRNA selection on the ribosome, the mechanism by which ribosomal ambiguity (ram) mutations promote miscoding remains unclear. Here, we present two X-ray crystal structures of the Thermus thermophilus 70S ribosome containing 16S rRNA ram mutations, G347U and G299A. Each of these mutations causes miscoding in vivo and stimulates elongation factor thermo unstable (EF-Tu)-dependent GTP hydrolysis in vitro. Mutation G299A is located near the interface of ribosomal proteins S4 and S5 on the solvent side of the subunit, whereas G347U is located 77 Å distant, at intersubunit bridge B8, close to where EF-Tu engages the ribosome. Despite these disparate locations, both mutations induce almost identical structural rearrangements that disrupt the B8 bridge--namely, the interaction of h8/h14 with L14 and L19. This conformation most closely resembles that seen upon EF-Tu-GTP-aminoacyl-tRNA binding to the 70S ribosome. These data provide evidence that disruption and/or distortion of B8 is an important aspect of GTPase activation. We propose that, by destabilizing B8, G299A and G347U reduce the energetic cost of attaining the GTPase-activated state and thereby decrease the stringency of decoding. This previously unappreciated role for B8 in controlling the decoding process may hold relevance for many other ribosomal mutations known to influence translational fidelity.

摘要

经过四十年的研究,旨在了解 tRNA 在核糖体上的选择,核糖体模糊性(ram)突变促进错译的机制仍不清楚。在这里,我们展示了含有 Thermus thermophilus 70S 核糖体 16S rRNA ram 突变 G347U 和 G299A 的两个 X 射线晶体结构。这些突变中的每一个都在体内引起错译,并刺激延伸因子不稳定(EF-Tu)依赖性 GTP 水解体外。突变 G299A 位于核糖体蛋白 S4 和 S5 之间的溶剂侧亚基界面附近,而 G347U 位于 77 Å 远处,位于亚基间桥 B8 附近,靠近 EF-Tu 与核糖体结合的位置。尽管位置不同,但这两种突变都诱导了几乎相同的结构重排,破坏了 B8 桥,即 h8/h14 与 L14 和 L19 的相互作用。这种构象最类似于 EF-Tu-GTP-氨酰-tRNA 结合到 70S 核糖体上时观察到的构象。这些数据提供了证据,表明 B8 的破坏和/或变形是 GTPase 激活的一个重要方面。我们提出,通过破坏 B8,G299A 和 G347U 降低了达到 GTPase 激活状态的能量成本,从而降低了解码的严格性。B8 在控制解码过程中的这种以前未被认识到的作用可能与许多其他已知影响翻译保真度的核糖体突变有关。

相似文献

4
Distinct functional classes of ram mutations in 16S rRNA.16S rRNA 中 ram 突变的不同功能类别。
RNA. 2014 Apr;20(4):496-504. doi: 10.1261/rna.043331.113. Epub 2014 Feb 26.
6
Alterations in ribosomal protein L19 that decrease the fidelity of translation.核糖体蛋白L19的改变会降低翻译的保真度。
Biochimie. 2016 Sep-Oct;128-129:122-6. doi: 10.1016/j.biochi.2016.07.015. Epub 2016 Jul 28.
10

引用本文的文献

6
Regulation of translation by site-specific ribosomal RNA methylation.核糖体 RNA 甲基化的翻译调控。
Nat Struct Mol Biol. 2021 Nov;28(11):889-899. doi: 10.1038/s41594-021-00669-4. Epub 2021 Nov 10.
7
The case of the missing allosteric ribozymes.缺失别构核酶的案例。
Nat Chem Biol. 2021 Apr;17(4):375-382. doi: 10.1038/s41589-020-00713-2. Epub 2021 Jan 25.

本文引用的文献

1
Optimal simultaneous superpositioning of multiple structures with missing data.最优的同时叠加多个具有缺失数据的结构。
Bioinformatics. 2012 Aug 1;28(15):1972-9. doi: 10.1093/bioinformatics/bts243. Epub 2012 Apr 27.
4
Evolutionary optimization of speed and accuracy of decoding on the ribosome.核糖体上解码速度和准确性的进化优化。
Philos Trans R Soc Lond B Biol Sci. 2011 Oct 27;366(1580):2979-86. doi: 10.1098/rstb.2011.0138.
6
Crystal structure of the eukaryotic ribosome.真核生物核糖体的晶体结构。
Science. 2010 Nov 26;330(6008):1203-9. doi: 10.1126/science.1194294.
10
Features and development of Coot.Coot的特点与发展
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验