Friedrich Miescher Institute for Biomedical Research Basel, Switzerland.
Front Neural Circuits. 2013 Apr 23;7:71. doi: 10.3389/fncir.2013.00071. eCollection 2013.
The clever choice of animal models has been instrumental for many breakthrough discoveries in life sciences. One of the outstanding challenges in neuroscience is the in-depth analysis of neuronal circuits to understand how interactions between large numbers of neurons give rise to the computational power of the brain. A promising model organism to address this challenge is the zebrafish, not only because it is cheap, transparent and accessible to sophisticated genetic manipulations but also because it offers unique advantages for quantitative analyses of circuit structure and function. One of the most important advantages of zebrafish is its small brain size, both at larval and adult stages. Small brains enable exhaustive measurements of neuronal activity patterns by optical imaging and facilitate large-scale reconstructions of wiring diagrams by electron microscopic approaches. Such information is important, and probably essential, to obtain mechanistic insights into neuronal computations underlying higher brain functions and dysfunctions. This review provides a brief overview over current methods and motivations for dense reconstructions of neuronal activity and connectivity patterns. It then discusses selective advantages of zebrafish and provides examples how these advantages are exploited to study neuronal computations in the olfactory bulb.
明智地选择动物模型对于生命科学的许多突破性发现起到了关键作用。神经科学面临的一个突出挑战是深入分析神经元回路,以了解大量神经元之间的相互作用如何产生大脑的计算能力。解决这一挑战的一个很有前途的模式生物是斑马鱼,不仅因为它价格低廉、透明且易于进行复杂的遗传操作,还因为它在定量分析回路结构和功能方面具有独特的优势。斑马鱼最重要的优势之一是其幼鱼和成鱼阶段的大脑都很小。小的大脑可以通过光学成像进行详尽的神经元活动模式测量,并通过电子显微镜方法促进布线图的大规模重建。这些信息对于深入了解高级脑功能和功能障碍背后的神经元计算机制是重要的,而且可能是必不可少的。这篇综述简要概述了目前用于密集重建神经元活动和连接模式的方法和动机。然后讨论了斑马鱼的选择性优势,并提供了如何利用这些优势来研究嗅觉球中神经元计算的例子。