Howard Hughes Medical Institute, Janelia Farm Research Campus, Ashburn, Virginia, USA.
Nat Methods. 2012 Jun 3;9(7):755-63. doi: 10.1038/nmeth.2062.
Live imaging of large biological specimens is fundamentally limited by the short optical penetration depth of light microscopes. To maximize physical coverage, we developed the SiMView technology framework for high-speed in vivo imaging, which records multiple views of the specimen simultaneously. SiMView consists of a light-sheet microscope with four synchronized optical arms, real-time electronics for long-term sCMOS-based image acquisition at 175 million voxels per second, and computational modules for high-throughput image registration, segmentation, tracking and real-time management of the terabytes of multiview data recorded per specimen. We developed one-photon and multiphoton SiMView implementations and recorded cellular dynamics in entire Drosophila melanogaster embryos with 30-s temporal resolution throughout development. We furthermore performed high-resolution long-term imaging of the developing nervous system and followed neuroblast cell lineages in vivo. SiMView data sets provide quantitative morphological information even for fast global processes and enable accurate automated cell tracking in the entire early embryo.
活细胞成像技术受到光的穿透深度的限制。为了最大限度地提高组织的成像范围,我们开发了 SiMView 技术框架,用于高速在体成像,该技术可以同时记录样本的多个视角。SiMView 由一个带有四个同步光学臂的光片显微镜、用于长期基于 sCMOS 的高速图像采集的实时电子设备(每秒 1.75 亿个体素)以及用于高吞吐量图像配准、分割、跟踪和实时管理的计算模块组成,每秒可记录每个样本的多视图数据量达到 TB 级别。我们开发了单光子和多光子 SiMView 实现方案,并以 30 秒的时间分辨率记录了整个 Drosophila melanogaster 胚胎的细胞动力学。此外,我们还进行了发育中神经系统的高分辨率长期成像,并在体内追踪神经母细胞谱系。SiMView 数据集甚至可以提供快速全局过程的定量形态信息,并能够在整个早期胚胎中进行准确的自动细胞跟踪。