Suppr超能文献

一种新的、简单的 CT 扫描估计胸腔积液量的方法。

A new, simple method for estimating pleural effusion size on CT scans.

机构信息

Department of Radiology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY.

Department of Radiology, Albert Einstein College of Medicine & Montefiore Medical Center, Bronx, NY.

出版信息

Chest. 2013 Apr;143(4):1054-1059. doi: 10.1378/chest.12-1292.

Abstract

BACKGROUND

There is no standardized system to grade pleural effusion size on CT scans. A validated, systematic grading system would improve communication of findings and may help determine the need for imaging guidance for thoracentesis.

METHODS

CT scans of 34 patients demonstrating a wide range of pleural effusion sizes were measured with a volume segmentation tool and reviewed for qualitative and simple quantitative features related to size. A classification rule was developed using the features that best predicted size and distinguished among small, moderate, and large effusions. Inter-reader agreement for effusion size was assessed on the CT scans for three groups of physicians (radiology residents, pulmonologists, and cardiothoracic radiologists) before and after implementation of the classification rule.

RESULTS

The CT imaging features found to best classify effusions as small, moderate, or large were anteroposterior (AP) quartile and maximum AP depth measured at the midclavicular line. According to the decision rule, first AP-quartile effusions are small, second AP-quartile effusions are moderate, and third or fourth AP-quartile effusions are large. In borderline cases, AP depth is measured with 3-cm and 10-cm thresholds for the upper limit of small and moderate, respectively. Use of the rule improved interobserver agreement from κ = 0.56 to 0.79 for all physicians, 0.59 to 0.73 for radiology residents, 0.54 to 0.76 for pulmonologists, and 0.74 to 0.85 for cardiothoracic radiologists.

CONCLUSIONS

A simple, two-step decision rule for sizing pleural effusions on CT scans improves interobserver agreement from moderate to substantial levels.

摘要

背景

目前尚无针对 CT 扫描中胸腔积液量分级的标准化系统。一个经过验证的系统分级方法将改善检查结果的交流,并可能有助于确定是否需要影像学引导下进行胸腔穿刺。

方法

对 34 例胸腔积液量差异较大的患者的 CT 扫描进行测量,使用容积分割工具进行测量,并对与大小相关的定性和简单定量特征进行评估。利用最能预测积液大小并能区分小、中、大量积液的特征,制定分类规则。在实施分类规则之前和之后,由三组医生(放射科住院医师、肺病专家和心胸放射科医生)对 CT 扫描的胸腔积液大小进行评估,评估读者间对胸腔积液大小的一致性。

结果

发现最佳分类积液为小、中、大量的 CT 成像特征为前/后四分位数(AP)和锁骨中线处最大 AP 深度。根据决策规则,第一 AP 四分位积液为小,第二 AP 四分位积液为中,第三或第四 AP 四分位积液为大。在边界病例中,分别使用 3cm 和 10cm 作为小和中量的上界阈值来测量 AP 深度。使用该规则后,所有医生的观察者间一致性从κ=0.56提高到 0.79,放射科住院医师从κ=0.59提高到 0.73,肺病专家从κ=0.54提高到 0.76,心胸放射科医生从κ=0.74提高到 0.85。

结论

一种用于 CT 扫描中胸腔积液量分级的简单两步决策规则可将观察者间一致性从中等提高到显著水平。

相似文献

引用本文的文献

5
An Acute Hepatic Hydrothorax Causing Tension.一例导致张力性气胸的急性肝性胸水
Cureus. 2024 Oct 15;16(10):e71543. doi: 10.7759/cureus.71543. eCollection 2024 Oct.

本文引用的文献

1
Diagnosis of pleural effusion: a systematic approach.胸腔积液的诊断:一种系统方法。
Am J Crit Care. 2011 Mar;20(2):119-27; quiz 128. doi: 10.4037/ajcc2011685.
5
Semiautomated segmentation of pleural effusions in MDCT datasets.基于 MDCT 数据集的胸腔积液半自动分割。
Acad Radiol. 2010 Jul;17(7):841-8. doi: 10.1016/j.acra.2010.02.011. Epub 2010 Apr 18.
6
Ultrasound-guided thoracentesis.超声引导下胸腔穿刺术。
Chest. 2006 Jun;129(6):1709-14. doi: 10.1378/chest.129.6.1709.
7
Etiology and prognostic significance of massive pleural effusions.大量胸腔积液的病因及预后意义
Respir Med. 2005 Sep;99(9):1183-7. doi: 10.1016/j.rmed.2005.02.022. Epub 2005 Apr 7.
8
Radiology in pleural disease: state of the art.胸膜疾病的放射学:最新进展
Respirology. 2004 Aug;9(3):300-12. doi: 10.1111/j.1440-1843.2004.00599.x.
10
Clinical practice. Pleural effusion.临床实践。胸腔积液。
N Engl J Med. 2002 Jun 20;346(25):1971-7. doi: 10.1056/NEJMcp010731.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验