Suppr超能文献

蒙特卡罗研究系统几何形状和散射栅对锥束 CT 散射分布的影响。

Monte Carlo study of the effects of system geometry and antiscatter grids on cone-beam CT scatter distributions.

机构信息

Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland 21205, USA.

出版信息

Med Phys. 2013 May;40(5):051915. doi: 10.1118/1.4801895.

Abstract

PURPOSE

The proliferation of cone-beam CT (CBCT) has created interest in performance optimization, with x-ray scatter identified among the main limitations to image quality. CBCT often contends with elevated scatter, but the wide variety of imaging geometry in different CBCT configurations suggests that not all configurations are affected to the same extent. Graphics processing unit (GPU) accelerated Monte Carlo (MC) simulations are employed over a range of imaging geometries to elucidate the factors governing scatter characteristics, efficacy of antiscatter grids, guide system design, and augment development of scatter correction.

METHODS

A MC x-ray simulator implemented on GPU was accelerated by inclusion of variance reduction techniques (interaction splitting, forced scattering, and forced detection) and extended to include x-ray spectra and analytical models of antiscatter grids and flat-panel detectors. The simulator was applied to small animal (SA), musculoskeletal (MSK) extremity, otolaryngology (Head), breast, interventional C-arm, and on-board (kilovoltage) linear accelerator (Linac) imaging, with an axis-to-detector distance (ADD) of 5, 12, 22, 32, 60, and 50 cm, respectively. Each configuration was modeled with and without an antiscatter grid and with (i) an elliptical cylinder varying 70-280 mm in major axis; and (ii) digital murine and anthropomorphic models. The effects of scatter were evaluated in terms of the angular distribution of scatter incident upon the detector, scatter-to-primary ratio (SPR), artifact magnitude, contrast, contrast-to-noise ratio (CNR), and visual assessment.

RESULTS

Variance reduction yielded improvements in MC simulation efficiency ranging from ∼17-fold (for SA CBCT) to ∼35-fold (for Head and C-arm), with the most significant acceleration due to interaction splitting (∼6 to ∼10-fold increase in efficiency). The benefit of a more extended geometry was evident by virtue of a larger air gap-e.g., for a 16 cm diameter object, the SPR reduced from 1.5 for ADD = 12 cm (MSK geometry) to 1.1 for ADD = 22 cm (Head) and to 0.5 for ADD = 60 cm (C-arm). Grid efficiency was higher for configurations with shorter air gap due to a broader angular distribution of scattered photons-e.g., scatter rejection factor ∼0.8 for MSK geometry versus ∼0.65 for C-arm. Grids reduced cupping for all configurations but had limited improvement on scatter-induced streaks and resulted in a loss of CNR for the SA, Breast, and C-arm. Relative contribution of forward-directed scatter increased with a grid (e.g., Rayleigh scatter fraction increasing from ∼0.15 without a grid to ∼0.25 with a grid for the MSK configuration), resulting in scatter distributions with greater spatial variation (the form of which depended on grid orientation).

CONCLUSIONS

A fast MC simulator combining GPU acceleration with variance reduction provided a systematic examination of a range of CBCT configurations in relation to scatter, highlighting the magnitude and spatial uniformity of individual scatter components, illustrating tradeoffs in CNR and artifacts and identifying the system geometries for which grids are more beneficial (e.g., MSK) from those in which an extended geometry is the better defense (e.g., C-arm head imaging). Compact geometries with an antiscatter grid challenge assumptions of slowly varying scatter distributions due to increased contribution of Rayleigh scatter.

摘要

目的

随着锥形束 CT(CBCT)的普及,人们对性能优化产生了兴趣,其中射线散射被认为是影响图像质量的主要限制因素之一。CBCT 通常会受到散射的影响,但不同 CBCT 配置的成像几何形状多种多样,这表明并非所有配置都会受到相同程度的影响。图形处理单元(GPU)加速的蒙特卡罗(MC)模拟在一系列成像几何形状中进行,以阐明控制散射特性、散射栅格效果、引导系统设计和增强散射校正的因素。

方法

通过包含方差减少技术(相互作用分裂、强制散射和强制检测)并扩展到包括 X 射线光谱和散射栅格和平板探测器的分析模型,对在 GPU 上实现的 MC X 射线模拟器进行了加速。该模拟器应用于小动物(SA)、肌肉骨骼(MSK)四肢、耳鼻喉(Head)、乳房、介入 C 臂和机载(千伏)线性加速器(Linac)成像,轴到探测器距离(ADD)分别为 5、12、22、32、60 和 50cm。每个配置均在有无散射栅格的情况下进行建模,并具有(i)长轴在 70-280mm 之间变化的椭圆形圆柱体;和(ii)数字鼠和人体模型。散射的影响通过入射到探测器上的散射角分布、散射与原始射线的比值(SPR)、伪影大小、对比度、对比度噪声比(CNR)和视觉评估来评估。

结果

方差减少技术使 MC 模拟效率提高了 17 倍(适用于 SA CBCT)至 35 倍(适用于 Head 和 C 臂),由于相互作用分裂(效率提高 6 至 10 倍),效率提高最为显著。更大的空气间隙几何形状的优势显而易见,例如,对于 16cm 直径的物体,ADD = 12cm(MSK 几何形状)时的 SPR 从 1.5 降低到 ADD = 22cm(Head)和 ADD = 60cm(C 臂)时的 0.5。由于散射光子的角度分布更广泛,因此具有较短空气间隙的配置的栅格效率更高,例如,MSK 几何形状的散射抑制因子约为 0.8,而 C 臂的约为 0.65。栅格减少了所有配置的杯状伪影,但对散射引起的条纹的改善有限,并导致 SA、乳房和 C 臂的 CNR 降低。由于栅格的存在,向前散射的相对贡献增加(例如,MSK 配置下没有栅格时的瑞利散射分数约为 0.15,而有栅格时约为 0.25),导致散射分布具有更大的空间变化(其形式取决于栅格方向)。

结论

一个结合 GPU 加速和方差减少技术的快速 MC 模拟器对一系列 CBCT 配置进行了散射相关的系统检查,突出了单个散射分量的幅度和空间均匀性,说明了 CNR 和伪影的权衡,以及确定了对于栅格更有益的系统几何形状(例如 MSK)和对于扩展几何形状更有利的系统几何形状(例如 C 臂头部成像)。具有散射栅格的紧凑型几何形状由于瑞利散射的贡献增加,挑战了散射分布变化缓慢的假设。

相似文献

引用本文的文献

本文引用的文献

4
Development of a patient-specific two-compartment anthropomorphic breast phantom.个体化双室仿体乳房模型的研制。
Phys Med Biol. 2012 Jul 7;57(13):4293-307. doi: 10.1088/0031-9155/57/13/4293. Epub 2012 Jun 15.
9
Improved scatter correction using adaptive scatter kernel superposition.使用自适应散射核叠加提高散射校正。
Phys Med Biol. 2010 Nov 21;55(22):6695-720. doi: 10.1088/0031-9155/55/22/007. Epub 2010 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验