Suppr超能文献

在酿酒酵母中异源表达和表征细菌 2-C-甲基-D-赤藓醇-4-磷酸途径。

Heterologous expression and characterization of bacterial 2-C-methyl-D-erythritol-4-phosphate pathway in Saccharomyces cerevisiae.

机构信息

Department of Systems Biology, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.

出版信息

Appl Microbiol Biotechnol. 2013 Jul;97(13):5753-69. doi: 10.1007/s00253-013-4877-y. Epub 2013 May 1.

Abstract

Transfer of a biosynthetic pathway between evolutionary distant organisms can create a metabolic shunt capable of bypassing the native regulation of the host organism, hereby improving the production of secondary metabolite precursor molecules for important natural products. Here, we report the engineering of Escherichia coli genes encoding the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway into the genome of Saccharomyces cerevisiae and the characterization of intermediate metabolites synthesized by the MEP pathway in yeast. Our UPLC-MS analysis of the MEP pathway metabolites from engineered yeast showed that the pathway is active until the synthesis of 2-C-methyl-D-erythritol-2,4-cyclodiphosphate, but appears to lack functionality of the last two steps of the MEP pathway, catalyzed by the [4Fe-4S] iron sulfur cluster proteins encoded by ispG and ispH. In order to functionalize the last two steps of the MEP pathway, we co-expressed the genes for the E. coli iron sulfur cluster (ISC) assembly machinery. By deleting ERG13, thereby incapacitating the mevalonate pathway, in conjunction with labeling experiments with U-¹³C₆ glucose and growth experiments, we found that the ISC assembly machinery was unable to functionalize ispG and ispH. However, we have found that leuC and leuD, encoding the heterodimeric iron-sulfur cluster protein, isopropylmalate isomerase, can complement the S. cerevisiae leu1 auxotrophy. To our knowledge, this is the first time a bacterial iron-sulfur cluster protein has been functionally expressed in the cytosol of S. cerevisiae under aerobic conditions and shows that S. cerevisiae has the capability to functionally express at least some bacterial iron-sulfur cluster proteins in its cytosol.

摘要

在进化上相距较远的生物体之间转移生物合成途径可以创建一个代谢旁路,能够绕过宿主生物体的天然调节,从而提高重要天然产物前体分子的次生代谢产物的产量。在这里,我们报告了将编码 2-C-甲基-D-赤藓醇-4-磷酸(MEP)途径的大肠杆菌基因工程改造到酿酒酵母的基因组中,并对酵母中 MEP 途径合成的中间代谢产物进行了表征。我们对工程酵母中 MEP 途径代谢产物的 UPLC-MS 分析表明,该途径在合成 2-C-甲基-D-赤藓醇-2,4-环二磷酸之前一直是活跃的,但似乎缺乏 MEP 途径的最后两个步骤的功能,该步骤由 ispG 和 ispH 编码的 [4Fe-4S] 铁硫簇蛋白催化。为了使 MEP 途径的最后两个步骤具有功能性,我们共表达了大肠杆菌铁硫簇(ISC)组装机制的基因。通过删除 ERG13,从而使甲羟戊酸途径失活,结合用 U-¹³C6 葡萄糖进行标记实验和生长实验,我们发现 ISC 组装机制无法使 ispG 和 ispH 具有功能性。然而,我们发现编码异二聚体铁硫簇蛋白异丙基苹果酸异构酶的 leuC 和 leuD 基因可以补充酿酒酵母 leu1 营养缺陷型。据我们所知,这是首次在有氧条件下将细菌铁硫簇蛋白在酿酒酵母的细胞质中实现功能性表达,并表明酿酒酵母具有在其细胞质中功能性表达至少一些细菌铁硫簇蛋白的能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验