Suppr超能文献

用于非酒精性脂肪性肝病纤维化无创评估的新算法。

Novel algorithm for non-invasive assessment of fibrosis in NAFLD.

机构信息

Department of Gastroenterology and Hepatology, University Hospital, University Duisburg-Essen, Essen, Germany.

出版信息

PLoS One. 2013 Apr 30;8(4):e62439. doi: 10.1371/journal.pone.0062439. Print 2013.

Abstract

INTRODUCTION

Various conditions of liver disease and the downsides of liver biopsy call for a non-invasive option to assess liver fibrosis. A non-invasive score would be especially useful to identify patients with slow advancing fibrotic processes, as in Non-Alcoholic Fatty Liver Disease (NAFLD), which should undergo histological examination for fibrosis.

PATIENTS/METHODS: Classic liver serum parameters, hyaluronic acid (HA) and cell death markers of 126 patients undergoing bariatric surgery for morbid obesity were analyzed by machine learning techniques (logistic regression, k-nearest neighbors, linear support vector machines, rule-based systems, decision trees and random forest (RF)). Specificity, sensitivity and accuracy of the evaluated datasets to predict fibrosis were assessed.

RESULTS

None of the single parameters (ALT, AST, M30, M60, HA) did differ significantly between patients with a fibrosis score 1 or 2. However, combining these parameters using RFs reached 79% accuracy in fibrosis prediction with a sensitivity of more than 60% and specificity of 77%. Moreover, RFs identified the cell death markers M30 and M65 as more important for the decision than the classic liver parameters.

CONCLUSION

On the basis of serum parameters the generation of a fibrosis scoring system seems feasible, even when only marginally fibrotic tissue is available. Prospective evaluation of novel markers, i.e. cell death parameters, should be performed to identify an optimal set of fibrosis predictors.

摘要

简介

各种肝脏疾病的情况以及肝活检的缺点都要求有一种非侵入性的选择来评估肝纤维化。非侵入性评分将特别有助于识别那些纤维化进展缓慢的患者,如非酒精性脂肪性肝病(NAFLD),这些患者应该进行纤维化的组织学检查。

患者/方法:通过机器学习技术(逻辑回归、k-最近邻、线性支持向量机、基于规则的系统、决策树和随机森林(RF))分析了 126 例因病态肥胖而行减肥手术的患者的经典肝脏血清参数、透明质酸(HA)和细胞死亡标志物。评估数据集对纤维化预测的特异性、敏感性和准确性。

结果

纤维化评分 1 或 2 的患者之间的单一参数(ALT、AST、M30、M60、HA)均无显著差异。然而,使用 RF 组合这些参数可达到 79%的纤维化预测准确性,敏感性超过 60%,特异性为 77%。此外,RF 确定细胞死亡标志物 M30 和 M65 比经典肝脏参数对决策更为重要。

结论

基于血清参数生成纤维化评分系统似乎是可行的,即使只有少量纤维组织可用。应前瞻性评估新的标志物,即细胞死亡参数,以确定最佳的纤维化预测因子集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/700d/3640062/3d62bd26d02e/pone.0062439.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验