Suppr超能文献

基于中子编码的多肽鉴定标记。

Neutron encoded labeling for peptide identification.

机构信息

Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States.

出版信息

Anal Chem. 2013 May 21;85(10):5129-37. doi: 10.1021/ac400476w. Epub 2013 May 2.

Abstract

Metabolic labeling of cells using heavy amino acids is most commonly used for relative quantitation; however, partner mass shifts also detail the number of heavy amino acids contained within the precursor species. Here, we use a recently developed metabolic labeling technique, NeuCode (neutron encoding) stable isotope labeling with amino acids in cell culture (SILAC), which produces precursor partners spaced ~40 mDa apart to enable amino acid counting. We implement large scale counting of amino acids through a program, "Amino Acid Counter", which determines the most likely combination of amino acids within a precursor based on NeuCode SILAC partner spacing and filters candidate peptide sequences during a database search using this information. Counting the number of lysine residues for precursors selected for MS/MS decreases the median number of candidate sequences from 44 to 14 as compared to an accurate mass search alone (20 ppm). Furthermore, the ability to co-isolate and fragment NeuCode SILAC partners enables counting of lysines in product ions, and when the information is used, the median number of candidates is reduced to 7. We then demonstrate counting leucine in addition to lysine results in a 6-fold decrease in search space, 43 to 7, when compared to an accurate mass search. We use this scheme to analyze a nanoLC-MS/MS experiment and demonstrate that accurate mass plus lysine and leucine counting reduces the number of candidate sequences to one for ~20% of all precursors selected, demonstrating an ability to identify precursors without MS/MS analysis.

摘要

使用重氨基酸对细胞进行代谢标记是最常用于相对定量的方法;然而,伙伴质量转移也详细说明了前体物质中包含的重氨基酸的数量。在这里,我们使用了一种新开发的代谢标记技术,NeuCode(中子编码)稳定同位素标记细胞培养中的氨基酸(SILAC),它产生的前体伙伴间隔约 40mDa,可实现氨基酸计数。我们通过一个名为“Amino Acid Counter”的程序实现了大规模的氨基酸计数,该程序根据 NeuCode SILAC 伙伴间隔确定前体中最可能的氨基酸组合,并在使用此信息进行数据库搜索时过滤候选肽序列。与仅使用精确质量搜索相比,对选定用于 MS/MS 的前体的赖氨酸残基数进行计数,将候选序列的中位数数量从 44 减少到 14(20ppm)。此外,共分离和片段 NeuCode SILAC 伙伴的能力使我们能够在产物离子中计数赖氨酸,并且当使用此信息时,候选者的中位数数量减少到 7。然后,我们展示了除赖氨酸外还可以对亮氨酸进行计数,与仅使用精确质量搜索相比,搜索空间减少了 6 倍,从 43 减少到 7。我们使用此方案分析了一个 nanoLC-MS/MS 实验,并证明了精确质量加上赖氨酸和亮氨酸计数将候选序列的数量减少到所选前体的约 20%,这表明无需 MS/MS 分析即可识别前体的能力。

相似文献

1
Neutron encoded labeling for peptide identification.基于中子编码的多肽鉴定标记。
Anal Chem. 2013 May 21;85(10):5129-37. doi: 10.1021/ac400476w. Epub 2013 May 2.
3
Neutron-encoded signatures enable product ion annotation from tandem mass spectra.中子编码特征可实现串联质谱产物注释。
Mol Cell Proteomics. 2013 Dec;12(12):3812-23. doi: 10.1074/mcp.M113.028951. Epub 2013 Sep 16.
6
Multiplexed quantification for data-independent acquisition.用于数据非依赖采集的多重定量分析。
Anal Chem. 2015 Mar 3;87(5):2570-5. doi: 10.1021/ac503593d. Epub 2015 Feb 11.

引用本文的文献

3
Sample Multiplexing Strategies in Quantitative Proteomics.定量蛋白质组学中的样本多路复用策略
Anal Chem. 2019 Jan 2;91(1):178-189. doi: 10.1021/acs.analchem.8b05626. Epub 2018 Dec 18.
7
NeuCode Proteomics Reveals Bap1 Regulation of Metabolism.神经编码蛋白质组学揭示了Bap1对代谢的调控作用。
Cell Rep. 2016 Jul 12;16(2):583-595. doi: 10.1016/j.celrep.2016.05.096. Epub 2016 Jun 30.
8
Neucode Labels for Multiplexed, Absolute Protein Quantification.用于多重绝对蛋白质定量的Neucode标签
Anal Chem. 2016 Mar 15;88(6):3295-303. doi: 10.1021/acs.analchem.5b04773. Epub 2016 Feb 25.
9
Phosphoproteomics in the Age of Rapid and Deep Proteome Profiling.快速深度蛋白质组分析时代的磷酸化蛋白质组学
Anal Chem. 2016 Jan 5;88(1):74-94. doi: 10.1021/acs.analchem.5b04123. Epub 2015 Nov 19.

本文引用的文献

5
Instant spectral assignment for advanced decision tree-driven mass spectrometry.即时谱分配用于先进的决策树驱动的质谱分析。
Proc Natl Acad Sci U S A. 2012 May 29;109(22):8411-6. doi: 10.1073/pnas.1205292109. Epub 2012 May 14.
6
The expanding field of SILAC.SILAC 技术的扩展领域。
Anal Bioanal Chem. 2012 Sep;404(4):967-76. doi: 10.1007/s00216-012-5998-3. Epub 2012 Apr 25.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验