Suppr超能文献

近年来同位素质谱标记技术的发展及其在定量蛋白质组学中的应用。

Recent advances in isobaric labeling and applications in quantitative proteomics.

机构信息

Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA.

School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA.

出版信息

Proteomics. 2022 Oct;22(19-20):e2100256. doi: 10.1002/pmic.202100256. Epub 2022 Jun 22.

Abstract

Mass spectrometry (MS) has emerged at the forefront of quantitative proteomic techniques. Liquid chromatography-mass spectrometry (LC-MS) can be used to determine abundances of proteins and peptides in complex biological samples. Several methods have been developed and adapted for accurate quantification based on chemical isotopic labeling. Among various chemical isotopic labeling techniques, isobaric tagging approaches rely on the analysis of peptides from MS2-based quantification rather than MS1-based quantification. In this review, we will provide an overview of several isobaric tags along with some recent developments including complementary ion tags, improvements in sensitive quantitation of analytes with lower abundance, strategies to increase multiplexing capabilities, and targeted analysis strategies. We will also discuss limitations of isobaric tags and approaches to alleviate these restrictions through bioinformatic tools and data acquisition methods. This review will highlight several applications of isobaric tags, including biomarker discovery and validation, thermal proteome profiling, cross-linking for structural investigations, single-cell analysis, top-down proteomics, along with applications to different molecules including neuropeptides, glycans, metabolites, and lipids, while providing considerations and evaluations to each application.

摘要

质谱(MS)已成为定量蛋白质组学技术的前沿。液相色谱-质谱(LC-MS)可用于测定复杂生物样品中蛋白质和肽的丰度。已经开发和改编了几种方法,基于化学同位素标记进行准确的定量。在各种化学同位素标记技术中,等压标记方法依赖于基于 MS2 的定量而不是基于 MS1 的定量的肽分析。在这篇综述中,我们将概述几种等压标签,以及一些最新的发展,包括互补离子标签、提高低丰度分析物的灵敏定量、增加多重化能力的策略以及靶向分析策略。我们还将讨论等压标签的局限性以及通过生物信息学工具和数据采集方法来减轻这些限制的方法。这篇综述将重点介绍等压标签的几个应用,包括生物标志物的发现和验证、热蛋白质组学分析、用于结构研究的交联、单细胞分析、自上而下的蛋白质组学,以及在不同分子中的应用,包括神经肽、聚糖、代谢物和脂质,同时为每个应用提供考虑和评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/573b/9787039/3f15c897d434/PMIC-22-2100256-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验