文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

一种基于与细胞大小无关的电学特性的用于细胞类型分类的微流控系统。

A microfluidic system for cell type classification based on cellular size-independent electrical properties.

机构信息

State Key Laboratory of Transducer Technology, Institute of Electronics, Chinese Academy of Sciences, Beijing, PR China.

出版信息

Lab Chip. 2013 Jun 21;13(12):2272-7. doi: 10.1039/c3lc41361f. Epub 2013 May 3.


DOI:10.1039/c3lc41361f
PMID:23640025
Abstract

This paper presents a microfluidic system enabling cell type classification based on continuous characterization of size-independent electrical properties (e.g., specific membrane capacitance (C(specific membrane)) and cytoplasm conductivity (σ(cytoplasm)). In this study, cells were aspirated continuously through a constriction channel, while cell elongation and impedance profiles at two frequencies (1 kHz and 100 kHz) were measured simultaneously. Based on a proposed distributed equivalent circuit model, 1 kHz impedance data were used to evaluate cellular sealing properties with constriction channel walls and 100 kHz impedance data were translated to C(specific membrane) and σ(cytoplasm). Two lung cancer cell lines of CRL-5803 cells (n(cell) = 489) and CCL-185 cells (n(cell) = 487) were used to evaluate this technique, producing a C(specific membrane) of 1.63 ± 0.52 μF cm(-2) vs. 2.00 ± 0.60 μF cm(-2), and σ(cytoplasm) of 0.90 ± 0.19 S m(-1)vs. 0.73 ± 0.17 S m(-1). Neural network-based pattern recognition was used to classify CRL-5803 and CCL-185 cells, producing success rates of 65.4% (C(specific membrane)), 71.4% (σ(cytoplasm)), and 74.4% (C(specific membrane) and σ(cytoplasm)), suggesting that these two tumor cell lines can be classified based on their electrical properties.

摘要

本文提出了一种基于连续表征大小无关的电学特性(如特定细胞膜电容(C(specific membrane))和细胞质电导率(σ(cytoplasm))的微流控系统,实现细胞类型分类。在这项研究中,细胞被连续吸入收缩通道,同时测量细胞在两个频率(1 kHz 和 100 kHz)下的伸长和阻抗谱。基于提出的分布式等效电路模型,1 kHz 阻抗数据用于评估细胞与收缩通道壁的密封性能,而 100 kHz 阻抗数据则转换为 C(specific membrane) 和 σ(cytoplasm)。使用两种肺癌细胞系 CRL-5803 细胞(n(cell) = 489)和 CCL-185 细胞(n(cell) = 487)来评估该技术,产生的 C(specific membrane) 分别为 1.63 ± 0.52 μF cm(-2) 和 2.00 ± 0.60 μF cm(-2),以及 σ(cytoplasm) 分别为 0.90 ± 0.19 S m(-1)和 0.73 ± 0.17 S m(-1)。基于神经网络的模式识别用于对 CRL-5803 和 CCL-185 细胞进行分类,产生的成功率分别为 65.4%(C(specific membrane))、71.4%(σ(cytoplasm))和 74.4%(C(specific membrane) 和 σ(cytoplasm)),表明这两种肿瘤细胞系可以根据其电学特性进行分类。

相似文献

[1]
A microfluidic system for cell type classification based on cellular size-independent electrical properties.

Lab Chip. 2013-5-3

[2]
A microfluidic system enabling continuous characterization of specific membrane capacitance and cytoplasm conductivity of single cells in suspension.

Biosens Bioelectron. 2012-12-26

[3]
Tumor cell characterization and classification based on cellular specific membrane capacitance and cytoplasm conductivity.

Biosens Bioelectron. 2014-2-20

[4]
Development of microfluidic impedance cytometry enabling the quantification of specific membrane capacitance and cytoplasm conductivity from 100,000 single cells.

Biosens Bioelectron. 2018-4-7

[5]
Microfluidic characterization of specific membrane capacitance and cytoplasm conductivity of single cells.

Biosens Bioelectron. 2012-11-2

[6]
Classification of cell types using a microfluidic device for mechanical and electrical measurement on single cells.

Lab Chip. 2011-8-8

[7]
Simultaneous characterization of instantaneous Young's modulus and specific membrane capacitance of single cells using a microfluidic system.

Sensors (Basel). 2015-1-27

[8]
The Instrumentation of a Microfluidic Analyzer Enabling the Characterization of the Specific Membrane Capacitance, Cytoplasm Conductivity, and Instantaneous Young's Modulus of Single Cells.

Int J Mol Sci. 2017-6-19

[9]
Specific membrane capacitance, cytoplasm conductivity and instantaneous Young's modulus of single tumour cells.

Sci Data. 2017-2-14

[10]
Crossing constriction channel-based microfluidic cytometry capable of electrically phenotyping large populations of single cells.

Analyst. 2019-1-28

引用本文的文献

[1]
Tutorial on impedance and dielectric spectroscopy for single-cell characterisation on microfluidic platforms: theory, practice, and recent advances.

Lab Chip. 2025-2-25

[2]
Single-Cell Classification Based on Population Nucleus Size Combining Microwave Impedance Spectroscopy and Machine Learning.

Sensors (Basel). 2023-1-15

[3]
Classification between Normal and Cancerous Human Urothelial Cells by Using Micro-Dimensional Electrochemical Impedance Spectroscopy Combined with Machine Learning.

Sensors (Basel). 2022-10-19

[4]
Microfluidics for Neuronal Cell and Circuit Engineering.

Chem Rev. 2022-9-28

[5]
Autoregressive parametric modeling combined ANOVA approach for label-free-based cancerous and normal cells discrimination.

Heliyon. 2021-5-12

[6]
Use of an Insulation Layer on the Connection Tracks of a Biosensor with Coplanar Electrodes to Increase the Normalized Impedance Variation.

Biosensors (Basel). 2019-9-16

[7]
Influence of Electrode Connection Tracks on Biological Cell Measurements by Impedance Spectroscopy.

Sensors (Basel). 2019-6-26

[8]
Microfluidic dielectrophoresis illuminates the relationship between microbial cell envelope polarizability and electrochemical activity.

Sci Adv. 2019-1-11

[9]
Developments in label-free microfluidic methods for single-cell analysis and sorting.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018-4-24

[10]
Membrane capacitance of thousands of single white blood cells.

J R Soc Interface. 2017-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索