Suppr超能文献

微流控介电泳阐明了微生物细胞膜的极化率与电化学活性之间的关系。

Microfluidic dielectrophoresis illuminates the relationship between microbial cell envelope polarizability and electrochemical activity.

机构信息

Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

Department of Plant and Microbial Biology, BioTechnology Institute, University of Minnesota Twin Cities, 1479 Gortner Avenue, St. Paul, MN 55108, USA.

出版信息

Sci Adv. 2019 Jan 11;5(1):eaat5664. doi: 10.1126/sciadv.aat5664. eCollection 2019 Jan.

Abstract

Electrons can be transported from microbes to external insoluble electron acceptors (e.g., metal oxides or electrodes in an electrochemical cell). This process is known as extracellular electron transfer (EET) and has received considerable attention due to its applications in environmental remediation and energy conversion. However, the paucity of rapid and noninvasive phenotyping techniques hinders a detailed understanding of microbial EET mechanisms. Most EET phenotyping techniques assess microorganisms based on their metabolism and growth in various conditions and/or performance in electrochemical systems, which requires large sample volumes and cumbersome experimentation. Here, we use microfluidic dielectrophoresis to show a strong correlation between bacterial EET and surface polarizability. We analyzed surface polarizabilities for wild-type strains and cytochrome-deletion mutants of two model EET microbes, and , and for strains heterologously expressing EET pathways in various growth conditions. Dielectrophoretic phenotyping is achieved with small cell culture volumes (~100 μl) in a short amount of time (1 to 2 min per strain). Our work demonstrates that cell polarizability is diminished in response to deletions of crucial outer-membrane cytochromes and enhanced due to additions of EET pathways. Results of this work hold exciting promise for rapid screening of direct EET or other cell envelope phenotypes using cell polarizability as a proxy, especially for microbes difficult to cultivate in laboratory conditions.

摘要

电子可以从微生物转移到外部不溶性电子受体(例如,电化学电池中的金属氧化物或电极)。这个过程被称为细胞外电子转移(EET),由于其在环境修复和能量转换中的应用而受到了广泛关注。然而,缺乏快速和非侵入性的表型分析技术阻碍了对微生物 EET 机制的详细了解。大多数 EET 表型分析技术基于微生物在不同条件下的代谢和生长以及在电化学系统中的性能来评估微生物,这需要大量的样品体积和繁琐的实验。在这里,我们使用微流控介电泳来显示细菌 EET 与表面极化率之间的强相关性。我们分析了两种模型 EET 微生物 和 的野生型菌株和细胞色素缺失突变体的表面极化率,以及在各种生长条件下异源表达 EET 途径的 菌株。介电泳表型分析可以在短时间内(每个菌株 1 到 2 分钟)使用小的细胞培养体积(约 100μl)完成。我们的工作表明,在外膜细胞色素缺失的情况下,细胞极化率会降低,而添加 EET 途径后,细胞极化率会增强。这项工作的结果为使用细胞极化率作为替代物快速筛选直接 EET 或其他细胞包膜表型提供了令人兴奋的前景,特别是对于在实验室条件下难以培养的微生物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/aa27/6357865/3e186df04fc6/aat5664-F1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验